Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхность разрушения композита

В композитах серебра, содержащего более 10% вольфрамовой проволоки, разрывы волокон были локализованы в окрестности поверхности разрушения композита [39]. Авторы [39] пришли также к выводу о том, что усталостная прочность волокнистых композитов относительно нечувствительна к поверхностным дефектам, что находится в разительном контрасте с чувствительностью усталости металлов к несовершенствам поверхности.  [c.398]


Тем не менее, исследования поперечного нагружения волокнистых композитов явно свидетельствуют о том, что в таких условиях прочность связи на поверхности раздела должна в большей степени определять прочность композита, чем в условиях осевого нагружения. То, что в некоторых композитах А1 — В и Ti — В слой интерметаллида на поверхности раздела е влияет на прочность, возможно, объясняется разрушением композита вследствие рас-щ,епления волокон. Такое расщепление практически сводит на нет роль поверхности раздела при поперечном нагружении, так как волокна не могут нести поперечной нагрузки, даже если поверхность раздела и передает ее.  [c.60]

Метод конечных элементов применял и Адамс [1] он использовал метод модуля сдвига для определения напряженного состояния композита при поперечном растяжении. Рассматривались напряжения, отвечающие интервалу от предела упругости до разрушения одной из составляющих композита, при квадратном и прямоугольном расположениях волокон предполагалось, что разрушение матрицы происходит тогда, когда напряжения в композите достигают предела прочности материала матрицы. По оценке Адамса, в композите А1—34% В с прямоугольным расположением волокон первой должна разрушаться матрица на участках минимального расстояния между волокнами. Разрушение по расчету должно происходить при поперечном нагружении композита напряжением 17,2 кГ/мм (что много меньше предела прочности материала матрицы, составляющего более 23,1 кГ/мм ). Однако в эксперименте композит разрушался путем расщепления волокон. Предсказать такой характер разрушения не представлялось возможным, так как, хотя напряжения на поверхности раздела и в волокнах были рассчитаны, прочность этих элементов при поперечном растяжении неизвестна. Автор совершенствует эту модель с целью описать процессы распространения трещины и полного разрушения композита. Вообще говоря, если известны механические свойства поверхности раздела матрицы и волокон, эта модель позволяет предсказать как разрушение по поверхности раздела, так и другие типы разрушения.  [c.193]

Глава открывается кратким обсуждением наиболее распространенных методов определения вязкости разрушения композитных материалов. Затем рассмотрено разрушение композитных материалов, упрочненных волокнами и частицами, а также слоистых композитов, причем особое внимание уделено волокнистым системам направленной кристаллизации. Наряду с экспериментальными данными для каждого класса материалов представлена сводка соответствующих теоретических результатов. В конце главы приводится обзор данных по разрушению композитов и обсуждается влияние поверхности раздела.  [c.267]


В пользу механизма затупления вершины трещины свидетельствует также поведение некоторых металлических композитов. При введении малых количеств (2—5%) дисперсных (размером 1— 5 мкм) слабо связанных с матрицей твердых сферических частиц в материал, которому обычно присущи малые значения энергии разрушения, вязкость последнего может существенно увеличиться. Слабая поверхность раздела способствует образованию округлых полостей и не может выдерживать растягивающих напряжений, вследствие чего трещина тормозится из-за уменьшения локальных растягивающих напряжений, а вершина ее притупляется полностью. Таким образом, работа разрушения композита значительно увеличивается [18].  [c.303]

Показано, что, если распространяющаяся в композите трещина пересекает волокна упрочнителя, вязкость разрушения увеличивается тем больше, чем больше волокна отслаиваются от матрицы. Значит, из соображений повышения вязкости разрушения предпочтительной является слабая поверхность раздела. Однако при распространении трещины в матрице параллельно волокнам предпочтительна прочная поверхность раздела — это позволяет предотвратить разрушение по поверхности раздела, связанное с малыми затратами энергии. Были отмечены и другие случаи так, при распространении трещины перпендикулярно волокнам высокая вязкость разрушения может быть обусловлена несколькими механизмами. При действии одного из них — вытягивания волокон — вязкость разрушения определяется силами трения и длиной вытянутого из матрицы отрезка волокна. Высокая вязкость разрушения может быть получена и в композитах, в которых не происходит ни отслаивания, ни вытягивания волокон. Так, в системе бор — алюминий вязкость разрушения зависит в основном от энергии деформации, накопленной волокном в пластической зоне деформации композита непосредственно к моменту разрушения волокна. Вязкость разрушения ориентированных композитов, как правило, слабо зависит от вязкости разрушения матрицы. Исключение представляет случай, когда поверхность раздела прочна, а трещина распространяется параллельно волокнам в этих условиях вязкости разрушения композита и материала матрицы сопоставимы. При достаточно высокой объемной доле упрочнителя и слабой поверхности раздела вязкость разрушения определяется поверхностью раздела. Вязкость разрушения композитов, армированных ориентированным в нескольких направлениях упрочнителем, зависит, главным образом, от тех волокон, которые расположены поперек трещины и разрушение которых необходимо для дальней-  [c.304]

Для создания совместимой системы упрочнитель — матрица необходимо найти компромиссное решение в отношении двух противоположных требований 1) желательности образования прочной связи на поверхности раздела для эффективной передачи нагрузки и поддержания оплошности при термических циклах и 2) необходимости предотвратить разрушение композита за счет взаимодействия упрочнителя и матрицы при высоких рабочих температурах. Таким образом, первое требование предполагает возбуждение химической реакции согласно второму, напротив, химической реакции следует препятствовать. Следовательно, в идеальном случае упрочнитель и матрица должны химически взаимодействовать лишь в такой степени, в какой это необходимо для образования связи при температурах, более высоких, чем тс, при которых предполагается использование материала. Химическое взаимодействие при рабочих температурах можно допустить только в том случае, если скорость реакции достаточно мала для обеспечения требуемой долговечности материала (требуемая долговечность определяется, главным образом, экономическими факторами).  [c.387]

Рис. 1. Электронная микрофотография поверхности разрушения при растяжении композита на основе стекловолокна и полипропилена [18]. X 220. Рис. 1. Электронная микрофотография <a href="/info/28817">поверхности разрушения</a> при растяжении композита на основе стекловолокна и полипропилена [18]. X 220.

Другой результат этого исследования состоял в определении вклада в энергию разрушения, обусловленного шероховатостью поверхности. Для каждой из трех линейных зависимостей, приведенных на рис. 5, величина энергии разрушения, отсекаемая этими прямыми на оси ординат, была в 1,5 — 2,0 раза больше этой величины для стеклянной матрицы без включенной второй фазы. Так как стекло имеет гладкую поверхность разрушения в отличие от шероховатых поверхностей, характерных для композита, то дисперсная фаза приводит также к увеличению энергии разрушения вследствие шероховатой поверхности разрушения.  [c.24]

Отметим, что поверхности разрушения, изображенные на рис. 9, а, б, г, характерны, как правило, и для других композитов. Однако при продольном сжатии поверхность разрушения (рис. 9, б) может иметь несколько других видов в зависимости от типа волокон и применяемого способа испытания. Более детально это будет обсуждено в разд. III.  [c.116]

Для эмпирического построения поверхности разрушения больше не требуется проведение обширных испытаний в условиях комбинированного нагружения. Критический объем Гс, который является характеристикой данного композита, можно определить из такого простого эксперимента, как разрушение при чистом растяжении. При любом другом простом или сложном нагружении разрушение можно охарактеризовать на основе анализа напряжений в кончике трещины и феноменологического критерия разрушения.  [c.242]

В настоящей главе рассматривается влияние поверхности раздела волокно —матрица на структурную целостность и прочность композитов. Кратко излагаются различные теоретические и экспериментальные методы оценки адгезионной прочности на поверхности раздела. Обсуждаются возможности применения таких методов и их ограничения. Исследуется влияние различных факторов на распределение напряжений и адгезионную прочность на поверхности раздела, а также взаимоовязь между адгезионной прочностью и морфологией поверхности разрушения композита.  [c.42]

Из приведенных примеров становится очевидным, что качество адгезионного соединения на паверх1Ности раздела определяет характер поверхности разрушения композита при растяжении его вдоль оси волокон. Если композит нагружают в попереч 01М направлении, то характер разрушения, как правило, хрупкий и поверхность разрушения пересекает матрицу, границу раздела и некоторые волокна.  [c.54]

Мэхью и др. [46], а также Той и Ингквест [65] приводят многочисленные микрофотографии морфологии поверхности разрушения композитов при разных режимах продольного нагружения. При этом характер поверхности разрушения образцов соответствует поверхности, показанной на рис. 12.  [c.54]

Высказывалось предположение, что возможны случаи, когда предпочтительна слабая поверхность раздела. Согласно Куку и Гордону [12], поле напряжений у вершины развивающейся трещины включает не только главные напряжения, стремящиеся раскрыть трещину в направлении ее распространения, но и напряжения, стремящиеся раскрыть ее в перпендикулярном направлении. Значит, эти дополнительные напряжения могут раскрывать плоскости с ослабленной связью, пересекаемые магистральной трещиной. Эм бери и др. [17] применили эти представления к случаю разрушения слоистых композитов. Они показали, что в пакете стальных листов распространение трещины задерживается процессом расслаивания это приводило к важному результату — снижению температуры перехода от вязкого разрушения к хрупкому более чем на 100 К. Эти исследования были продолжены Олмондом и др. [2], которые получили ряд новых данных об указанном типе структур, тормозящих распространение трещины. По очевидным соображениям аналогичный подход применим и к волокнистым композитам этот вопрос рассмотрен в гл. 7 в связи с проблемой разрушения. Значительные объемы композита, расположенные по обе стороны от магистральной трещины, могут быть охвачены одновременным действием различных механизмов разрушения, а в таких случаях, как показали Эдсит и Витцелл [1] на примере композитов алюминий — бор, вязкость разрушения композита может превосходить вязкость разрушения металлической матрицы.  [c.25]

Если волокна пластичны, то поперечные напряжения на поверхности раздела между волокном и матрицей могут даже более заметно влиять на разрушение композита, поскольку при напряжениях, соответствующих образованию шейки и разрушению изолированных волокон, шейкообразован ие в волокнах композита стеснено. Естественно, такое влияние уменьшается с увеличением содержания волокон, так как матрица, объемное содержание которой уменьшается, менее эффективно тормозит развитие шейки. Этот эффект, обнаруженный Пилером [48] в системе серебро— сталь, наблюдали также Милейко [45] при повышенных температурах в Ni — W и Келли и Тайсон [34] —в Си — Мо и Си — W.  [c.54]

Процесс образования связи обусловлен взаимодействием электронов на атомном уровне. Силы взаимодействия являются силами ближнего порядка, и поэтому они начинают действовать лишь тогда, когда расстояния между поверхностями составляющих композита не превышают нескольких диаметров атома. Последнее требование имеет большое значение в смежных областях, в частности, при пайке твердым припоем. Например, затруднения при пайке алюминия связаны с присутствием под припрем окис-ных лленок. Механическое разрушение таких пленок (например, при ультразвуковой пайке железа) приводит к немедленному смачиванию и растворению основного материала в расплавленном припое. Можно привести два примера из области композитов. Пеппер и др. [32] заметили, что расплавленный алюминий не омачивает графитовую пряжу в состоянии поставки до тех пор, пока ее не подвергнут предварительной обработке для удаления поверхностных загрязнений. Подобные же наблюдения были сделаны при исследовании композита никель — графит [27].  [c.83]


Реакция между матрицей и волокном может происходить либо на поверхности раздела матрица — продукт реакции, либо на поверхности раздела волокно — продукт реакции. В первом случае через образующееся соединение могут диффундировать атомы материала волокна, во втором — атомы материала матрицы. В некоторых случаях протекают оба эти процесса. Блэкбёрн с сотр. [6] и другие авторы показали, что реакция между титаном и бором идет по первому механизму. Уход атомов бора из волокон приводит к образованию пор в центре волокна, вокруг вольфрамовой сердцевины (рис. 7). Некоторые поры могут возникать на поверхности раздела волокно — продукт реакции, но причина их образования здесь, как полагают, иная. Действительно, образование дибор ида титана сопровождается уменьшением объема на 20%, и это обстоятельство может явиться причиной образования пор на внутренней границе межфазной прослойки. Каков бы ни был механизм возникновения пористости, нестабильность поверхности раздела приводит к разупрочнению композита. Так, в зависимости от характера реакции разрушение композита при поперечном нагружении может пройти либо по матрице, либо по поверхности раздела (гл. 5).  [c.95]

По условиям растягивающего нагружения в направлении расположения упрочнителя нормальные напряжения возникают на поверхности раздела лишь из-за поперечного сжатия. Однако раз-рушание по (поверхности раздела в этих условиях является вторичным аффектом. Имеется в виду, что растягивающие напряжения, нормальные к поверхности волокна, достигают предела прочности поверхности раздела лишь после значительного сжатия, например такого, которое происходит, если в волокне начинает образовываться шейка. Джонс, [13] и другие исследователи на- блюдали разрушение композитов алюминий — нержавеющая сталь по поверхности раздела в тех случаях, когда волокна отслаивались от матрицы при образовании шейки. Согласно Веннету и др.  [c.141]

Композит с -прочными поверхностями раздела и однородными свойствами волокон и матрицы будет разрушаться по плоскости, перпендикулярной направлению приложенных нап ряжений, и поверхность излома будет гладкой. Если волокна неоднородны по прочности из-за наличия слабых точек (дефектов) или разрывов, трещина будет распространяться так, чтобы связать слабые точки. Вследствие этого трещина либо пройдет лишний участок пути в матрице (п рочная поверхность раздела), либо будет распро-ст ранять ся по поверхности раздела. Как показано выше, максимальная длина вытягиваемой части волокна определяется критической длиной. С другой стороны, матрица разрушится в первую очередь, если деформация разрушения для нее меньше, чем для волокон. На рис. 1 схематически показаны некоторые из этих типов разрушения. На рис. 1, а показан характер разрушения композита с малой деформацией разрушения матрицы согласно работе Джонса и Олстера [14], такое разрушение наблюдается в композитах алюминий — нержавеющая сталь. Рис. 1, б отвечает случаю,, когда мала деформация разрушения волокон (например, волокна бора). В этом случае предполагается, что прочность поверхности раздела высока, поскольку трещины соединяются путем сдвига матрицы. В случае рис. 1, в деформация разрушения волокна мала, но из-за малой прочности поверхности раздела трещина в матрице отклоняется слабо, поскольку волокна легко вытягиваются из матрицы. Такое поведение может быть ирисуще композиту алюминий — бор со слабой связью. Для этого типа разрушения предполагается, что деформация разрушения  [c.142]

При анализе прочности композитов в условиях внеосного нагружения влияние поверхности раздела может быть учтено несколькими способами. Например, можно предположить, что прочность поверхности раздела достаточно велика для передачи вне-осных нагрузок между волокнами и матрицей вплоть до момента разрушения композита. Такое предположение означае т, что по-ве рхность раздела прочна и не разрушается. Таким образом, в соответствии с терминологией, использованной в гл. 4, посвященной прочности при продольном растяжении, теории этого типа могут быть названы теориями прочных поверхностей раздела .  [c.186]

Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Рис. 15. Типы разрушения композита Nb (юплав)—W при 1477 К [11]. а — разрушение по поверхности раздела при поперечном растяжении (90°) б —сдвиговое разрушение по поверхности раздела при растяжении по-д углом 45 к проволоке. Рис. 15. <a href="/info/48022">Типы разрушения</a> композита Nb (юплав)—W при 1477 К [11]. а — разрушение по <a href="/info/26134">поверхности раздела</a> при поперечном растяжении (90°) б —сдвиговое разрушение по <a href="/info/26134">поверхности раздела</a> при растяжении по-д углом 45 к проволоке.
ВИЯХ растяжения. При испытаниях под углами 60 и 90° разрушение происходит в основном не по поверхности раздела, а путем расщепления волокон, и, значит, при данных условиях испытания прочность поверхности раздела превышает поперечную проч1Ность волокна. Расщепление волокон при поперечном растяжении образцов показано на рис. 20. Хотя двух- и четырехслойные образцы обладают примерно одинаковой проч ностью при растяжении, они различаются по характеру распределения разрушенных волокон. В образцах большей толщины расщепление волокон происходит по всей ширине рабочей части образца. В таких образцах большей толщины поперечное сечение уменьшается пропорционально сечению расщепленных волокон, и матрица благодаря деформационному упрочнению может взять на себя нагрузку, высвобожденную расщепленным волокном, раньше, чем в данной точке. начнется разрушение композита. В более тонких образцах расщепление волокна уменьшает поперечное сечение до такой степени, что композит разрушается раньше, чем матрица оказывается в состоянии компенсировать это уменьшение за счет деформационного упрочнения.  [c.213]

Прево и Маккарти [18] проводили испытания композитов А16061—борсик, в которых матрица, полученная путем плазменного напыления, обладала более совершенной связью, а волокна— большим сопротивлением расщеплению. Пластины А16061—борсик были изготовлены горячим прессованием слоев ленты, полученной плазменным напылением, с последующей термической обработкой для старения матрицы. Авторы отметили, что поперечная прочность композитов с волокнами диаметром 100 мкм была ниже, чем у композитов с волокнами диаметром 140 мкм. Поперечная прочность композитов с волокнами меньшего диаметра составляла около 15 кГ/мм и определялась, в основном, расщеплением волокон, а не разрушением по поверхности раздела. Композиты с волокнами большего диаметра обладали поперечной прочностью около 25 кГ/мм2 при этом разрушалась, главным образом, матрица, а разрушение по поверхности раздела и расщепление волокон играли незначительную роль. Как отмечают авторы, высокие значения поперечной прочности обусловлены хорошей связью между лентами, полученными плазменным напылением, что, в свою очередь, приводит к прочной связи как в пределах собственно матрицы, так и между волокном и матрицей.  [c.225]


В данной главе теории прочности при внеосном растяжении классифицировались в зависимости от того, каким образом учитывается роль поверхности раздела были выделены три группы теорий. В теориях прочных поверхностей раздела предполагается, что разрушение поверхности раздела не опережает разрушение композита. В феноменологических теориях влияние поверхности раздела учитывается косвенно — в той мере, в какой она влияет на механические характеристики, значения которых входят в предложенные аналитические решения. В теориях слабых поверхностей раздела разрушение по поверхности раздела учитываетоя непосредственно. Последняя группа теорий является наиболее сложной и наименее разработанной. В настоящее время не существует теорий, развитых настолько, чтобы с их помощью можно было  [c.227]

Крайдер и Марчиано [48], исследуя прочность композитов алюминий — борсик при растяжении и сжатии, установили, что она заметно зависит от вида нагружения. В случае объемной доли упрочнителя 50% пределы прочности при растяжении и сжатии составляли соответственно 112 и 208 кГ/мм [48]. Сжимающая нагрузка воспринимается волокнами упрочнителя непосредственно, а растягивающая передается через поверхность раздела путем сдвига. Вследствие этого разрушение композита при одноосном сжатии представляет собой один из типов разрушения при испытании на выгибание.  [c.250]

Последняя работа Кляйна и Меткалфа [19] была посвящена экспериментальному изучению влияния поверхности раздела на вязкость разрушения композитов с металлической матрицей. Объектом исследования служил алюминиевый сплав А16061 с 45 об.% ориентированно расположенного упрочнителя. Для изменения состояния поверхности раздела композит выдерживали различное время — от О до 150 ч при температуре 811 К- После высо-  [c.285]

Простейшие слоистые материалы состоят из связанных гомогенных изотропных пластин. При изготовлении этих материалов слабые плоскости можно располагать благоприятным образом — так, чтобы обеспечить высокую вязкость разрушения композита. Рассмотрим идеализированный слоистый материал, изображенный на рис. 25. Поле напряжений перед трещиной задается уравнением (2). На небольшом расстоянии перед вершиной трещины развиваются поперечные растягивающие напряжения 0 . Они, в сочетании со сдвиговыми напряжениями Хху (возникающими при любых зиачениях угла 0, кроме 0=0°), могут вызвать межслоевое разрушение. Маккартни и др. [24] изучали сопротивление развитию трещины слоистого материала из высокопрочной стали (203 кГ/мм ) для случаев низкой, средней и высокой прочности связи. Связь низкой прочности (3,5—7,0 кГ/мм ) обеспечивали с помощью эпоксидных смол, а также оловянного и свинцово-оловянного припоя, связь средней прочности (38—60 кГ/мм )—с помощью серебряного припоя, а высокопрочную связь (140 кГ/мм ) — путем диффузионной сварки слоев. Во всех случаях при испытании на ударную вязкость по Шарпи образцы разрушались лишь до первой плоскости соединения слоев. Остальная часть образца сильно деформировалась и расслаивалась по той же поверхности раздела, но не разрушалась. Сходные результаты получил и Эмбе-ри с сотр. [9]. Если прочность связи уступает прочности листов, то происходит торможение трещины. Ляйхтер [23], однако, установил, что охрупчивающая фаза, возникающая при использовании некоторых твердых припоев, может существенно снизить вязкость разрушения.  [c.296]

Рассмотрим сначала случай твердой хрупкой частицы в относительно вязкой матрице. На поведение композита непосредственно влияют размер частиц, их объемная доля и прочность поверхности раздела. Частица действует как концентратор напряжений. Ее размер и расстояние до соседней частицы определяют взаимодействие между полями напряжений частиц. При разрушении такого композита трещина в непрерывной фазе (матрице) будет многократно наталкиваться на частицы. Если прочность поверхности раздела между частицей и матрицей мала, то трещина будет вести себя, как при взаимодействии с порой, поскольку такая частица не способна передавать растягивающие напряжения, а радиус кривизны у нее меньше, чем у фронта трещины. В результате возможен рост вязкости разрушения. Это подтверждается данными для армированных пластиков, у которых прочность связи по поверхности раздела можно в известной степени регулировать с помощью специальной обработки поверхности упрочнителя. В работах Браутмана и Саху [4], а также Уамбаха и др. [49] было установлено, что вязкость разрушения композитов с матрицей из эпоксидной смолы, полиэфира или полифениленоксида, армированных стеклянными сферами, растет по мере снижения прочности связи по поверхности раздела. Помимо затупления вершины трещины предложены и другие механизмы, объясняющие повышение вязкости разрушения. Браутман и Саху, например, связывают его с увеличением трещинообразования и деформации в подповерхностных слоях. Для исследованных композитов изменение объемной доли стеклянных шариков по-разному влияет на вязкость разру-  [c.302]

В данной главе раосматривается механизм передачи нагрузк>1 от матрицы к волокну через поверхность раздела и тем самым влияние поверхности раздела на структурную целостность композита. В Частности, анализируется влияние адгезии на прочность композитов и морфологию поверхности разрушения рассматриваются адгезионная прочность, методы измерения и расчета напряжений на поверхности раздела, остаточные напряжения и зависимость адгезии на поверхности раздела от режима нагружения композита, а также от наличия в нем пор и размеров волокон. Обсуждается возможность получения композитов с заданными адгезионными свойствами. Чтобы отразить общие тенденции и подчеркнуть наиболее важные моменты, многие из этих зависимостей иллюстрируются графически. Теоретическое рассмотрение указанных вопросов сопровождается соответствующими экспериментальными данными.  [c.44]

На рис. 11 схематически показаны типичные поверхности разрушения однонаправленных композитов при растяжении вдоль оси  [c.51]

Рис. 12. Микрофотографии поверхности разрушения эпоксидных углепластиков, полученные с помощью сканирующего электронного микроскопа [17]. а — при продольном нагружении композита, армированного волокнами ТКогпе1-50 б — при поперечном нагружении того же композита в — при продольном нагружении композита с высокой прочностью на растяжение г — при поперечном нагружении того же композита [17]. Рис. 12. Микрофотографии <a href="/info/28817">поверхности разрушения</a> <a href="/info/39033">эпоксидных углепластиков</a>, полученные с помощью <a href="/info/178533">сканирующего электронного</a> микроскопа [17]. а — при продольном нагружении композита, <a href="/info/560240">армированного волокнами</a> ТКогпе1-50 б — при <a href="/info/722160">поперечном нагружении</a> того же композита в — при продольном нагружении композита с высокой прочностью на растяжение г — при <a href="/info/722160">поперечном нагружении</a> того же композита [17].
На рис. 13 показана поверхность разрушения многослойного композита, состоящего из слоев волокон Thornel-60S, ориентированных под углом 45 . Схематически показаны также направление действия нагрузки и угол обзора при фотопрафировании. Для данного композита характер поверхности разрушения соот-  [c.53]

На рис. 35 показано влияние влаж1НОЙ среды на адгезионную прочность по поверхности раздела, измеряемую по энергии разрушения композита при сдвиге. Можно видеть, что влага разрушающе действует на адгезионное соединение, особенно при повышенной температуре. Результаты испытаний композитов во влажной среде приведены также в работах [26, 67, 34].  [c.76]

Хотя, по-видимому, увеличенная энергия разрушения в полимерах, содержащих дисперсный эластомер, и связана с увеличенной степенью молекулярной ориентации внутри полимерной матрицы, окружающей частицы эластомера, приведенные объяснения этого явления не очевидны. В других исследованиях по развитию трещины показано, что уровень возникающей молекулярной ориентации зависит от времени, в течение которого материал находится под влиянием поля напряжений около фронта трещины [2]. В одной из первых работ по полимерам с введенными для повышения вязкости частицами эластомера предполагалось, что частицы эластомера просто уменьшают скорость роста трещины. Это заключение было основано на наблюдениях Мерца и др. [43], которые показали, что частицы эластомера допускают значительное упругое удлинение и поэтому удерживают разрушенные поверхности полимера вместе до разрушения частиц. Таким образом, полимер в окрестности частиц эластомера находится под действием высоких напряжений вследствие влияния как поля напряжений в окрестности фронта трещины, так и неразрушенных частиц эластомера более долгое время, чем поверхности разрушения, не содержащие частиц. Этим может быть объяснена большая степень ориентации молекул в композитах полимер — эластомер.  [c.28]


Из анализа энергии разрушения, модуля упругости и прочности этой системы ясно, что, несмотря на более высокую энергию разрушения композитов с плохими связями по поверхностям раздела, прочностные свойства вследствие этой слабой связи определяют более низкий модуль упругости перед разрушением. Следует также отметить, что псевдопоры представляют собой более опасные инициаторы трещин, чем связанные с матрицей частицы, что также приводит к более низким прочностям.  [c.51]

Данная глава посвящена следующим вопросам. В разд. II дано более детальное определение однонаправленного композита и его физической структуры. Описаны характерные кривые напряжение — деформация некоторых композитов и виды поверхности разрушения. Приведены данные о типичных компонентах композитов волокна — неметалл и типичные кривые деформирования для них. Обсуждена также важная роль поверхностей раздела.  [c.109]


Смотреть страницы где упоминается термин Поверхность разрушения композита : [c.455]    [c.74]    [c.142]    [c.187]    [c.267]    [c.280]    [c.281]    [c.318]    [c.326]    [c.52]    [c.53]    [c.115]    [c.41]   
Разрушение и усталость Том 5 (1978) -- [ c.22 , c.41 , c.414 , c.436 , c.464 ]



ПОИСК



Волокнистые композиты поверхность разрушения

Композит

Композиты бороалюминиевые влияние на усталостную прочность микроструктуры поверхности разрушения

Композиты бороалюминиевые, влияние на усталостную прочность микроструктуры поверхности раздела разрушения

Поверхность разрушения

Разрушение волокнистых композитов и прочность поверхности

Разрушение волокнистых композитов поверхности раздела

Разрушение композитов

Слоистые композиты поверхности разрушения



© 2025 Mash-xxl.info Реклама на сайте