Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивирование химическое металлов

Пассивирование химическое металлов 122 сл.  [c.238]

Стабильность процесса по энергоемкости, съему металла и шероховатости поверхности зависит от кислотности электролита. При рН-7 раствор химически нейтрален, при pH < 7 он обладает кислыми, а при pH > 7—8 — щелочными свойствами. Гидроокисел ОН" повышает pH до 8—10, что вызывает пассивирование некоторых металлов и сплавов и резкое снижение производительности процесса.  [c.161]

Внедрение пассивирования позволило заменить механические способы очистки металла от окалины и ржавчины химическим травлением, что значительно повысило производительность очистных работ и в 2—3 раза снизило их стоимость. Установлено, что благодаря применению пассивирования очищенного металла резко сокращается (на 90—95%)) объем работ по удалению ржавчины с поверхности готовых конструкций перед их окончательной окраской трудоемкость очистки при этом уменьшается в среднем в 8 раз.  [c.232]


В гальванотехнике процесс пассивирования осуществляется путем химической или электрохимической обработки в соответствующих растворах. Ниже приведены составы растворов и режимы пассивирования некоторых металлов.  [c.432]

При химическом пассивировании указанные металлы или металлические покрытия на непродолжительное время (5—10 с) погружают в растворы, содержащие соединения Сг +, ионы водорода Н, а также анионы-активаторы (С1 , N0 , 801 , РО ", СНзСОО ). В результате взаимодействия металла с раствором по реакции  [c.432]

Пассивирование поверхности стальных изделий с целью кратковременной защиты их от воздействия окружающей среды проводят химической или электрохимической обработкой в кислых или щелочных растворах. Эффективность такого метода защиты от коррозии определяется условиями пассивирования, составом металла, а также состоянием его поверхности. Наибольшее повышение стойкости против коррозии достигается при пассивировании легированных сталей, причем длительность защитного действия пассивных пленок значительно больше, чем при обработке углеродистых сталей.  [c.14]

Следует иметь в виду, что окислительное действие кислородсодержащих кислот, например концентрированных азотной и серной, может быть использовано для пассивирования черных металлов, повышения их химической стойкости.  [c.11]

Детали, прошедшие операции чистовой обработки, в особенности детали с точными допусками, должны храниться в сухой атмосфере, предотвращающей их коррозию. С этой целью используют консервационные смазки, пассивирование черных металлов растворами нитрита натрия, упаковку в герметизированные полиэтиленовые чехлы. Хорошие результаты может дать применение ингибированных бумаг, в которые упаковывают детали. Для черных металлов пригодны бумаги, пропитанные ингибитором НДА, для цветных металлов — пропитанные ингибитором ХЦА или Г-2. Перед химической или электрохимической обработкой с поверхности деталей должен быть полностью удален консервационный слой. Детали, законсервированные с помощью ингибиторных бумаг, должны быть после расконсервации выдержаны на воздухе для удаления паров ингибитора.  [c.116]

Водяной пар и кислород диффундируют через любые органические материалы покрытий количественные зависимости описываются коэффициентами проницания, значения которых для этих газов и некоторых важных материалов покрытий приведены в табл. 5.5. Кислород, диффундирующий через эти покрытия, может вызвать процессы коррозии на поверхности металла при взаимодействии с одновременно диффундирующим водяным паром только в том случае, если происходит активация обычно пассивированного металла материалом покрытия или грунтовки. На эти процессы могут влиять химические свойства покрытия и другие вещества, которые тоже могут диффундировать из среды через покрытие, а также микрофизические особенности на границе раздела. Однако эти факторы изучены еще недостаточно. Для оценки опасности коррозии могут быть использованы частичные реакции по формулам (2,17), (2.21) и (4.3) для железа [19, 20]  [c.157]


Коррозией называют разрушение поверхности металла в результате химического или электрохимического воздействия среды. Чистая металлическая поверхность легко подвергается химическому воздействию среды. Однако, если в процессе начавшейся коррозии продукты ее образуют прочно связанную с металлом пленку, изолирующую поверхность от коррозионной среды, то металл приобретает пассивность по отношению к ней. Процесс искусственного образования тонких окисных пленок на поверхности металла для заш,иты его от коррозии и придания изделию лучшего вида называют пассивированием. Способностью к пассивированию обладают железо, никель, хром, алюминий и другие металлы.  [c.184]

Рецептуры 80 а и б пригодны для изготовления грунтовок воздушной сушки, но лучшие результаты получаются при нанесении их поверх грунтовки, приготовленной по рецептуре 79. По рецептуре 81 получается не совсем обычное покрытие оно иллюстрирует возможность использования химической реакции во время высыхания для пассивирования металла и получения органического покрытия с сильной адгезией.  [c.584]

Метод химического пассивирования заключается в том, что в воду вводят окислитель, под действием которого на металле образуется пассивная пленка, снижающая скорость коррозии.  [c.122]

При соприкосновении металла с кислородом последний может либо адсорбироваться на металлической поверхности, образуя пассивирующие слои, либо энергично реагировать с ней, образуя химические соединения. Для того чтобы решить вопрос о том, будет ли кислород реагировать с металлической поверхностью, надо знать, что легче электрону покинуть металлическую решетку и образовать адсорбированный ион кислорода, или атому металла оставить решетку и образовать металлический окисел. Тенденция к протеканию того или иного процесса зависит от отношения рабочей функции к теплоте сублимации [22]. Если это отношение (выраженное, например, в Электронвольтах) больше единицы, то металл-иону с термодинамической точки зрения легче покинуть металлическую решетку. Если оно меньше единицы, то электрону легче покинуть решетку, и в этом случае имеет место адсорбция кислорода и пассивирование поверхности.  [c.8]

Металл в процессе электрополирования не переходит в состояние устойчивой пассивности, так как происходит непрерывное химическое растворение пассивирующей окисной пленки в электролите. Сглаживание шероховатостей поверхности при электрополировании происходит вследствие неодинаковой степени пассивирования выступов и углублений.  [c.83]

Из существующих теорий для объяснения пассивного состояния металлов рассмотрим наиболее обоснованные и признанные — пленочную и адсорбционную. Пленочная теория пассивности объясняет состояние повышенной электрохимической устойчивости металлов образованием на их поверхности очень тонкой защитной пленки из нерастворимых продуктов взаимодействия металла со средой. Пленка состоит обычно из одной фазы, может быть солевой, гидроокисной или (наиболее часто) окисной природы. Поведение металла в пассивном состоянии определяется, таким образом, не свойствами самого металла, а физико-химическими свойствами пленки. Образовавшийся на анодной поверхности при электрохимическом процессе фазовый окисел вызывает более стойкое пассивирование в кислородсодержащем электролите, имеющем нейтральную или щелочную реакцию. Вместе с тем при анодной поляризации металла в кислородсодержащих кислотах образовавшаяся пассивная пленка находится в состоянии динамического равновесия с раствором, т. е. растворение внешней части пленки под химическим воздействием электролита компенсируется одновременным процессом анодного возобновления пленки.  [c.28]

В зависимости от химической природы металла и физикохимических параметров электролита активирующее действие анионов проявляется при определенных значениях электродного потенциала [44]. При изменении величины потенциала анионы могут оказывать противоположное (пассивирующее) воздействие на растворяющийся металл. Хлорнокислый электролит, активирующий железо, имеющее высокий потенциал при меньших значениях положительной поляризации способствует его пассивированию. Относительная активность анионов различной природы, их способность активировать металл, в частности железо, может быть охарактеризована следующим рядом [207]  [c.30]


Для правильной оценки химической стойкости металла в жидкой или газовой среде имеет большое значение продолжительность испытания.. Нельзя ограничиваться кратковременными испытаниями,, если изделие должно работать длительное время в агрессивных средах. Часто встречающиеся в литературе расхождения в оценке скорости коррозии для одного и того же металла или сплава в одинаковых средах объясняются различной продолжительностью испытаний. Это относится к тем случаям, когда скорость коррозии под действием среды (газа или жидкости) либо возрастает или уменьшается с течением времени, либо становится близкой к нулю в результате протекания процесса самопроизвольного пассивирования.  [c.18]

В зависимости от характера агрессивной среды применяются различные методы защиты металлов от коррозии. К ним относятся, в основном, следующие 1) пассивирование поверхности, т. е. создание на поверхности изделия окисной пленки 2) электрохимическая зашита (протекторная или электротоком), при которой защищаемое изделие становится катодом и не корродирует 3) обработка агрессивной среды для снижения ее активности путем введения ингибиторов (замедлителей) или веществ, химически связывающих активатор коррозии, например кислород в воде и нейтральных водных растворах 4) покрытие поверхности неметаллическими химически устойчивыми материалами лаками, красками, эмалями, резиной, пластмассами и т. п. 5) нанесение на поверхность изделий металлических покрытий 6) применение летучих ингибиторов и других средств.  [c.54]

На способности металлов к самопроизвольному переходу в пассивное состояние основан метод их защиты путем химического пассивирования. При пассивировании металл погружают в раствор окислителя и благодаря образованию плотного окисного слоя на его поверхности он хорошо противостоит коррозионному воздействию других сред.  [c.67]

В зависимости от характера операций детали промывают холодной, теплой (50—60°С) или горячей водой (80—90°С). Промывку в теплой воде применяют после операций химического и электрохимического обезжиривания, травления легких сплавов, перед и после процесса химического оксидирования черных металлов, после пассивирования цинковых и кадмиевых покрытий. Промывка в горячей воде — завершающая операция технологического процесса нанесения гальванических покрытий, ее производят для нагрева деталей, для ускорения их сушки (кроме хроматирования цинковых и кадмиевых покрытий, так как пассивная хроматная пленка пе выдерживает высоких температур).  [c.138]

Пассивирование кадмиевых покрытий. Для повышения коррозионной устойчивости кадмиевого покрытия применяется дополнительная химическая обработка кадмия в хроматных растворах, в результате которой на металле образуются пассивные пленки, аналогичные пассивным пленкам, получаемым на цинковых покрытиях.  [c.95]

Меньшая степень пассивирования выступов объясняется их повышенной химической активностью и более интенсивным растворением окисной пленки на них вследствие большей скорости диффузии в глубь электролита продуктов анодного растворения (на выступах слой окисной пленки тоньше и градиент концентрации выше, чем в углублениях). Повышенная растворимость окисных пленок на выступах связана также с большей пористостью пленок на острых пиках. Вязкая пленка продуктов анодного растворения, которой во многих работах приписывается главная роль в механизме полирования металлов, в данном случае рассматривается как возможный регулятор скорости растворения пассивирующего окисного слоя.  [c.120]

Хром и его сплавы (табл. 53—55). На воздухе и в воде при 20° С хром устойчив. При нагревании его химическая активность возрастает и при 1800—2000° С хром активно реагирует с азотом, углеродом, галогенами, а в кислороде сгорает. С холодной азотной кислотой хром не реагирует вследствие пассивирования. Многие другие кислоты его разрушают. Так, хром энергично реагирует с разбавленными кислотами НС1 и НгЗО . По сравнению с другими тугоплавкими металлами (кроме рения) хром обладает наибольшим сопротивлением окислению, что объясняется образованием на его поверхности прочной и плотной тугоплавкой окисной пленки.  [c.153]

При подготовке металла к окраске могут применяться многие способы очистки механический, химический, электрохимический, с применением ультразвука и др. Наряду с этим хорошей подготовкой под окраску стали является фосфатирование, для алюминия — оксидирование, для медных и покрытых медью изделий — пассивирование в растворах — пассиваторах.  [c.264]

Наибольшее распространение в промышленности нашли химические методы, включающие обезжиривание и травление. Их применение позволяет очистить поверхность металла от любых загрязнений, значительно увеличить производительность, повысить культуру производства. Кроме того, эти методы очистки можно сочетать с операциями предварительной антикоррозионной защиты (оксидирование, фосфатирование, пассивирование).  [c.13]

Применение специальных стабилизаторов иллюстрируется приведенными в этой главе различными рецепт фами пластмасс и покрытий. Исследования показали, что покрытия на основе поливиниловых смол, нанесенные по железу, цинку, оцинкованному железу и белой жести разлагаются под действием тепла быстрее, чем обычно, потому что эти металлы ускоряют процесс разлол<ения поливиниловых смол. Это явление можно предупредить пассивированием поверхности металла обычной химической обработкой или посредством применения грунтовок масляного или смоляного типа.  [c.562]


Известно, что даже при осаждении одного металла может происходить поляризация, обусловленная в той или иной степени замедленным разрядом ионов, пассивированием поверхности металла, концентрационными изменениями в прикатодном слое и задержками, связанными с образованием и ростом кристаллической решетки. При осаждении сплавов картина значительно осложнена. Например, при совместном разряде двух металлов, выделяющихся по отдельности с химической поляризацией, могут возникнуть концентрационные изменения в прикатодном слое, если скорости их разряда значительно отличаются и диффузия не успевает выравнивать неодинаковую убыль ионов из этого слоя. Кроме тбго, при электроосаждении сплавов очень важно знать зависимость их состава от плотности тока, чего не дают уравнения (1) и (2). Позднее [188] было предложено уравнение совместного разряда с учетом потенциала нулевого заряда, содержащее, однако, ряд постоянных, которые невозможно заранее рассчитать, поэтому по данному уравнению пока нельзя рассчитать и состав сплава. Поскольку пока нет проверенных количественных зависимостей составов сплавов от плотности тока, концентрации ионов и комплексообразователей в растворе, температуры и других факторов, ограничимся рассмотрением качественных зависимостей.  [c.46]

При более значительных скоростях движения воды, превы-шаюш,пх скорости, приведенные на кривой (рис. 45), наблюдается сильное разрушение металла вследствие комплексного явлении коррозии и эрозии. Указанный внд разрушения, известный иод названием коррозионной эрозии, возникающий вследствие механического воздействия агрессивной среды на поверхностные слои металла, покрытые продуктами коррозии или пассивированные, часто встречается в химической промышленности при эксплуатации насосов, трубопроводов и тому подобного оборудования, где имеет место воздействие на металл быстродвижущихся потоков жидкости, жидких капель или пара.  [c.81]

Наиболее простой и дешевой операцией для защиты серебра является пассивирование поверхности в растворах бихроматов. Многие исследователи отмечают, что эта пассивная пленка мало влияет на электрическое сопротивление. Существует два метода /юлуче-ния хроматных пленок химический и электрохимический. При последнем способе посеребренное изделие завешивается в качестве катода в раствор бихромата калия в смеси с карбонатом. При химическом пассивировании используется хромовая кислота или растворимая соль шестивалентного хрома К2СГ2О7. При этом методе хроматная пленка хорошо сцеплена с основным металлом, но зато электрохимическим методом можно получить более толстые пленки. На качество этих пленок влияет концентрация хрома, pH раствора н режим процесса температура, плотность тока и перемешивание. Поверхность изделия перед хроматированием должна быть активирована в кислоте или в щелочи. Полученная пленка, по данным многих авторов, не увеличивает переходного сопротивления и не препятствует пайке изделий.  [c.29]

Сплощное покрытие с хорошей адгезией к поверхности раздела препятствует скоплению на ней воды, способной вызвать коррозию металлической подложки. Практически покрытия не являются абсолютно оплошными, в их поры может шроникать вода и вызывать точечную коррозию металла. Поэтому в грунтовки часто вводят неорганические ингибиторы коррозии с контролируемой растворимостью в воде (например, хромат цинка), обеспечивающие химическое пассивирование незащищенных участков металла [4].  [c.219]

Электрохимический метод травления изделий имеет ряд преимуществ перед химическим. Он не оставляет каких-либо следов и пленок, не вызывает коррозии на основном металле, дает блестящую металлическую поверхность, отчасти пассивированную, что исключает коррозию изделия после травления. Кроме того, катодное травление стальных изделий производится в щелочном электролите без применения кислот. В состав растворов входит обычно едкий натр, цианистый натрий, как, например, в растворе, содержащем в 1 л 30—100 г л едкого натрия, 20—50 г1л цианистого натрия, 10 г л поваренной соли. Травление ведется при температуре до 40° С, при плотности тока 3—6 а1дм . В течение 45—50 сек изделие соединено с катодом, 10—15 сек — с анодом. Направление тока можно многократно чередовать, пока не получится желаемая степень очистки.  [c.54]

Из химических методов очистки основными являются обезжиривание в водных щелочных растворах и в органических растворителях, травление, одновременное обезжиривание и травление, одновременное обезжиривание и пассивирование, фосфатирование и пассивирование. При обезжиривании с поверхности металла удаляются различного рода загрязнения, которые в большинстве случаев имек т сложный состав — это гетерогенная смесь веществ, различных по химическому составу и физическим свойствам. Обезжиривание поверхности металла производится либо в водных растворах щелочей, либо в органических растворителях. При воздействии щелочей жиры растительного и животного происхождения частично омыляются и переходят в растворимые в воде мыла, а частично эмульгируются. Минеральные жиры и масла также эмульгируются. Органические растворители растворяют жировые загрязнения минерального и животного происхождения. Наибольшее распространение для обезжиривания поверхности металла получили уайт-спирит, бензин и хлорированные углеводороды.  [c.74]

A tivation — Активация. (1) Переход пассивной поверхности металла к химически активному состоянию. Противоположно пассивированию. (2) Химический процесс обработки поверхности, более восприимчивой к сцеплению с покрытием или наносимым металлом.  [c.889]

Химическое пассивирование металлов как метод предупреждения кислородной коррозии в воде высокой чистоты, теоретически обоснованный и разработанный Я. М. Колотыркиным, Т. X. Маргуловой, Г. М. Флорианович и О. И. Мартыновой [32, 47, 66], представляет практический интерес для защиты оборудования из стали и алюминия на химических производствах. Этот метод борьбы с коррозией применяется на многих объектах промышленности, использующих в качестве рабочей среды воду высокой чистоты [67]. Метод позволяет снижать концентрацию гидроксидов железа в теплоносителе с 20 до 4— 7 мкг/кг и ликвидировать коррозию как при низких, так и при высоких температурах.  [c.122]

Пассивирование с помощью нитробензоатов аминов является, таким образом, типичным примером пассивирования металла за счет ускорения катодной реакции восстановления ингибитора, которая сообщает электроду необходимый потенциал. Каким же образом достигается пассивация при использовании ингибиторов, не обладающих отаслительными свойствами или обладающих таковыми, но восстанавливающихся с большим перенапряжением На этот вопрос можно частично получить ответ, используя метод химической пассивации, а также другие физико-химические методы исследования ингибиторов.  [c.54]

Важно подчеркнуть, что при пассивировании подразумевается возникновение тонких 10 нм, или 100 А) окисных пленок с низкой растворимостью. Эти пленки достигают предельной толщины, которая неодинакова в различных условиях. Пассивность существует в определенном интервале потенциалов, ивсе пассивирующиеся электроды имеют поляризационные кривые, подобные изображенной на фиг. 55, с характерным резким, зависящим от потенциала падением плотности тока при установлении пассивности. Многие металлы реагируют со средой с образованием нерастворимых пленок непосредственно в процессе химической реакции, которая не зависит от потенциала, и этот эффект не следует смешивать с пассивностью. Свинец, например, устойчив к серной кислоте вследствие формирования на его поверхности малорастворимого сульфата, приостанавливающего дальнейшее разъедание. Эта реакция не зависит от потенциала, и поэтому анодная поляризационная кривая не показывает резкого уменьшения плотности тока. Следовательно, свинец не может считаться в рассматриваемой среде пассивным.  [c.116]


На некоторых предприятиях применяют химические методы очистки. При этом все имеющееся оборудование для очистки и грунтовки группируется в самостоятельную линию, в которой листы металла роликовым конвейером пропускаются через листоправйльные вальцы. Затем листоукладчик устанавливает листы в вертикальном положении на роликовый конвейер и подает в камеры подогрева, травления, промывки, нейтрализации пассивирования или грунтовки, после чего листы подаются либо в накопитель, либо на участок термической резки. Перед резкой листы подвергают разметке и маркировке. Если разметка и маркировка выполняются на самостоятельных машинах, то листы металла должны иметь ту же систему координат, что и машины термической резки для возможности закрепления листа на специальных рамах.  [c.322]

Рассмотрение потенциостатических кривых показывает, что кривые для железа, никеля и хрома имеют аналогичную форму и содержат четыре области растворения, характерных для пассивирующихся металлов активное состояние, переходная область от активного к пассивному состоянию, пассивная область и область перепассивации. Для молибдена [37, 38, 62, 63, 65] и вольфрама [63] удается установить только часть пассивной области и область перепассивации. Обусловлено это тем, ЧТО фкор рассматриваемых металлов находится Б начале области перепассивации. Поэтому исследовать полностью пассивную область и достичь активного состояния не представляется возможным, так как для поддержания потенциалов в указанных областях нужны плотности катодных токов, выходящие за пределы практически реализуемых плотностей. По-видимому, вследствие высокого сродства к кислороду, уже в условиях очень больших скоростей выделения водорода ( 0,1 а/сж ) происходит адсорбционно-химическое взаимодействие молибдена и вольфрама с кислородом воды и их пассивирование.  [c.25]

Хром, молибден и вольфрам — представители шестой группы периодической системы элементов. Указанные металлы обладают высокой химической активностью и легко взаимодействуют со средой, т. е. поверхность их обычно пассивна. Большая склонность хрома, молибдена и вольфрама к пассивированию существенно отражается на электрохимическом поведении они необратимы по отношению к собственным ионам в растворе и выделение их из водных растворов сильно затруднено. В частности, вольфрам и молибден осаждаются лишь в очень тонких слоях осаждение хрома затруднено в меньшей степени. До настоящего времени наиболее обстоятельно изучено электроосаждепие хрома. Хром можно осаждать как из трехвалентных, так и шестивалентных соединений хрома.  [c.149]

Электрохимическое полирование более эффективно, чем химическое, и менее трудоемко, чем механический способ обработки. Электрохимическое полирование проводится на аноде при высоких плотностях тока (150—1000 А/м ) и 60—80°С. Эффект сглаживания поверхности при электрохимическом полировании обусловлен тем, что скорость растворения металла на микровыступах больше, чем в микроуглублениях, вследствие различных условий пассивирования поверхности в растворах. В микроуглублениях образуется пассивная, более толстая и устойчивая пленка, которая растворяется медленнее, чем на микровыступах.  [c.139]

Зачастую между окончанием предпусковой химической очистки пароводяного тракта и вводом энергоблока в эксплуатацию может проходить значительное время. В целях предотвращения атмосферной коррозии металла в течение этого послепромывочного периода осуществляют специальную операцию пассивирования очищенной поверхности путем создания на ней равномерной защитной пленки магнетита (Рез04).Это достигается циркуляцией по контуру горячего раствора (/=100- -250° С) смеси гидразин-гидрата с аммиаком в течение 24—72 ч либо нитритно-фосфатным раствором при =70° С в течение 6—8 ч.  [c.84]

При поляризации положительнее точек и достигается область, в которой, так же как и для предыдущих растворов, наблюдается линейная зависимость логарифма плотности тока от потенциала. Наклон поляризационных кривых на участках в—с характеризует ббльшую величину перенапряжения анодного растворения электрода в этой области по сравнению с величиной перенапряжения анодного растворения в области отрицательных потенциалов (до потенциала О в). Поэтому можно полагать, что на этом участке анодное растворение идет не путем непосредственного образования ионов металла низшей валентности, а через промежуточный процесс образования окисной пленки и последующего ее химического растворения. Однако в отличие от вертикальных участков пассивного состояния основной тормозящей ступенью на участках в—с является не процесс химического растворения окисной пленки в кислоте, а электрохимический процесс анодного образования окисной пленки. Таким образом, при значительном содержании хлор-ионов наступление окисной пассивности не приводит к устойчивому пассивному состоянию, но фиксируется лишь как увеличение анодной поляризуемости по достижении потенциалов, соответствующих потенциалу полного пассивирования.  [c.12]

Однако, как и при химическом растворении металлов, ультразвуковое поле не всегда может устранить пассивность. Так, в случае алюминия в 0,4 N растворе Ма2504 ультразвуковое поле не только не устраняет, но даже ускоряет пассивирование анода. Аналогично действует ультразвук в случае анодного растворения железа в разбавленной щелочи, причем даже добавление хлоридов не активирует анод, как в отсутствие ультразвука. По-видимому, в этих условиях интенсивное раз-мещивание уничтожает активирующее действие хлорионов.  [c.143]

Технологические стадии процесса подготовки поверхности металла под окраску включают очистку от разнообразных загрязнений, механическую или химическую обработку для создания шероховатости и антикорро< зионную обработку (оксидирование, фосфатирование, пассивирование).  [c.12]


Смотреть страницы где упоминается термин Пассивирование химическое металлов : [c.307]    [c.266]    [c.144]    [c.828]    [c.145]    [c.348]    [c.348]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.122 ]



ПОИСК



Металлы химическая

Пассивирование

Пассивирование металла



© 2025 Mash-xxl.info Реклама на сайте