Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Даламбера—Эйлера Лагранжа

Даламбер, Эйлер, Лагранж создали принцип, основанный на сравнении движений. Этот принцип изучает мгновенное состояние движения и возможные отклонения от этого состояния, допускаемые связями в данный момент времени (возможные перемещения). Для механических систем с голономными идеальными связями из этого принципа непосредственно следуют уравнения движения системы материальных точек — уравнения Лагранжа второго рода.  [c.500]


Уравнения гидродинамики составлены на основании принципов и законов, разработанных такими исследователями, как Ньютон, Даламбер, Эйлер, Лагранж и другие. Так, основная идея этого принципа формулируется Даламбером следующим образом Для того чтобы найти движение нескольких тел, действующих друг на друга, нужно разложить полученные телами движения, т. е. движения, с которыми тела стремятся двигаться, на два других движения. Эти составляющие движения должны быть подобраны таким образом, что у каждого тела одно из этих составляющих движений должно уничтожаться, а другое должно быть таким и так направленным, чтобы действие окружающих тел не могло ничего в нем изменить. Отсюда легко видеть, что все законы движения тел могут быть сведены к законам равновесия. В самом деле, для решения любой задачи динамики нужно только разложить движение каждого тела на два движения. Зная одно из этих составляющих движений, мы сможем найти другое. Указанные условия всегда дадут все уравнения. Нет такой задачи динамики, которую нельзя было бы решить таким приемом [39].  [c.12]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]

Трудно переоценить роль математического анализа, теории дифференциальных уравнений, вариационного исчисления в современной механике. Ио, кроме этого, после Лейбница в механике осталось понятие действия. Его живая сила в XIX в. была переименована в кинетическую энергию, получив при этом и ясный физический смысл, и официальный статус меры движения. Его теоретические идеи обогатили механику Галилея, Декарта, Гюйгенса, его решения задач, как правило, подтверждали результаты знаменитых современников (Гюйгенса, Ньютона, Я. и И. Бернулли, Лопиталя). Идейное наследие и методы Лейбница получили развитие в трудах его последователей — Бернулли, Вариньона, Клеро, Мопертюи, Эйлера, Даламбера и Лагранжа.  [c.132]


Метод решения очень важной задачи о движении несвободной материальной системы с помощью уравнений статики был предложен в 1716 г. Я. Германом (впоследствии академиком Российской Академии наук) и в 1737 г. обобщен Л. Эйлером. Позднее этот метод получил развитие в трудах французского ученого Даламбера (1717—1783). Нельзя не упомянуть также имени французского ученого Лагранжа (1736—1813), проделавшего большую работу по математическому обоснованию законов механики. Выводы Лагранжа были уточнены и дополнены русским математиком и механиком, академиком М. В. Остроградским (1801—1861). Им же разработана общая теория удара, решен ряд важнейших задач из области гидростатики, гидродинамики, теории упругости и др.  [c.5]

Я приступил к решению этой задачи, анализ которой казался мне сам по себе новым и интересным, так как одновременно надо решать уравнения, число которых не является определенным. К счастью, метод, которым я воспользовался, дал мне формулы не слишком сложные, если учесть большое число операций, которые пришлось проделать. Я рассматриваю эти формулы сначала в том случае, когда число движущихся тел конечно, и я легко получаЮ всю теорию смешения простых и правильных колебаний, которую г-н Даниил Бернулли нашел только с помощью частных и косвенных примеров. Я перехожу к случаю бесконечного числа движущихся тел, и, показав недостаточность предыдущей теории в этом случае я извлекаю из моих формул то же построение для решения проблемы колеблющихся струн, которое дал г-н Эйлер и которое так энергично оспаривалось г-ном Даламбером В последнем замечании Лагранж имеет в виду графическое построение Эйлера, которое  [c.268]

Математик, механик, член Парижской академии наук (1733). Корреспондент Берлинской академии (1747). Многие его результаты в теории дифференциальных уравнений, интегральном исчислении, механике предвосхищали работы Эйлера, Клеро, П. Бернулли, Даламбера, Лагранжа. В 1764 г. он издал в Париже книгу Математические мемуары... [194], в предисловии к которой писал, что свой принцип механики, развитый далее Даламбером, он сформулировал в 1739 г.  [c.254]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

В середине XVIII в. Эйлер вывел общие уравнения движения идеальной жидкости. Даламберу, Эйлеру и Лагранжу принадлежат и первые исследования потенциального движения идеальной жидкости. На этой основе Лагранж построил теорию так называемых длинных волн. Рассматривалось движение волн в бесконечном прямолинейном канале постоянной глубины k. Направим ось Ох вдоль свободного уровня в его невозмущенном положении, а ось Оу — вертикально вверх и будем считать потенциал скоростей F функцией 01 X, у ж времени t. Величина у не должна значительно отличаться от нуля, поэтому разлагаем F по степеням у  [c.271]


После Эйлера в течение XVIII в. теория устойчивости развивается в русле динамики в двух направлениях. Одним из них является изучение малых коле- 119 баний механической системы около положения равновесия. Этим вопросом занимались А. Клеро, Д. Бернулли, Ж. Даламбер, Ж. Лагранж. В Аналитической механике Лагранжа (1788) теория малых колебаний системы с конечным числом степеней свободы изложена в ее классической форме. Ответ на вопрос, устойчиво ли для данной системы положение равновесия, около которого она начинает колебаться, дает исследование корней алгебраического уравнения, определяющего частоты колебаний, соответствующих отдельным степеням свободы. (При этом, как известно, Лагранж высказал ошибочное утверждение, что при наличии кратных корней уравнения частот должны появляться вековые члены и устойчивости не будет.)  [c.119]

Рассмотрено применение вариационного принципа Даламбера — Лагранжа и вытекающих из него следствий к термоупругой среде при конечной скорости распространения тепла и действии тепловых источников. Получены обобщенные уравнения Эйлера — Лагранжа и квазиканонические уравнения, определяющие движение термоупругой среды.  [c.4]

Среди колеблющихся тел ни одно не занимает такого выдающегося положения, как натянутые струны. С давних пор они применяются для музыкальных целей, да и в настоящее время они все еще являются существенной частью таких важных инструментов, как фортепиано и скрипка. Для математика они всегда должны представлять особый интерес, ибо именно вокруг них разыгрывались споры Даламбера, Эйлера, Бернулли и Лагранжа относительно природы решений дифференциальных уравнений в частных производных. Для изучающих ак)сгику струны вдвойне важны. Благодаря сравнительной простоте их теории они являются основой, которая облегчает рассмотрение трудных или неясных вопросов, таких, как вопросы, связанные с природой простых тонов с другой стороны, в форме монохорда или сонометра струны дают исключительно удобное средство для сравнения высот.  [c.193]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]

Путь универсализации методов, обобщения известных задач был главной чертой творчества Вариньона. По если его предшественники (Стевин, Галилей, Кеплер, Декарт) и современники (Гюйгенс, Пьютон, Лейбниц) искали универсальный принцип в мире философских идей, то он больше тяготел к универсализации математического аппарата механики. Особенно к адаптации идей математического анализа и дифференциальных уравнений. Основные идеи геометрической статики, принцип возможных перемещений , теорема об изменении количества движения, теорема об изменении кинетической энергии составляли основу механико-математических работ Вариньона. Это был пролог аналитической механики Эйлера-Даламбера-Лагранжа.  [c.204]


Своей Механикой Эйлер стремился расшифровать, разъяснить, упростить, развить, обобщить основные понятия и законы механики, созданной его предшественниками. В первую очередь — Ньютоном. Динамика Даламбера — это попытка радикальной перестройки основ механики, стремление к физической ясности ее понятий, предельной универсальности, всеобщности, наглядности и эффективности ее основополагающих принципов. Традиционный принцип виртуальных скоростей (перемещений) был прекрасным образцом основ теории равновесия тел. Поэтому идея его модернизации для нужд теории движения тел представляется вполне естественной. По потребовалась не столько модернизация математического содержания принципа, сколько пересмотр физического понятия равновесия, покоя. Пдея возможности уравновешивания, уничтожения некоторых динамических характеристик двигающегося тела в каждый момент времени связями (другими телами) оказалась очень перспективной. Пменно эту идею положил Лагранж в основу своего общего уравнения динамики, опубликованного в 1788 г.  [c.268]

Первые серьезные для своего времени исследования колебаний восходят к XVII веку. Они были выполнены Г. Галилеем и затем X. Гюйгенсом и касались лишь маятника. В XVIII веке, с развитием математического анализа и теоретической механики, интерес к колебательным процессам уже подкрепляется основательной теоретической базой. Так, Л. Эйлер в России занимается изучением колебаний корабля в связи с вопросом о его устойчивости, а Ж. Даламбер во Франции работает над исследованием колебаний струны. В конце XVIII века Лагранж в своем замечательном труде Аналитическая механика создает мощный математический аппарат в виде хорошо известных теперь уравнений движения в обобщенных координатах. Рассмотрев с его помощью некоторые задачи теории колебаний, приводящиеся к интегрированию линейных дифференциальных уравнений, он тем самым заложил основы линейной теории колебаний.  [c.7]


Смотреть страницы где упоминается термин Уравнение Даламбера—Эйлера Лагранжа : [c.9]    [c.13]    [c.198]    [c.2]    [c.161]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.36 , c.38 , c.40 , c.52 , c.55 ]



ПОИСК



Даламбер

Даламбера-Лагранжа)

Лагранжа - Эйлера уравнения уравнения Эйлера-Лагранжа

Лагранжа Эйлера

Уравнение Даламбера

Уравнение Даламбера — Лагранжа

Уравнение Эйлера

Уравнение Эйлера — Лагранжа

Уравнения Лагранжа

Эйлер

Эйлера лагранжев

Эйлера эйлеров

Эйлера — Даламбера



© 2025 Mash-xxl.info Реклама на сайте