Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы Обработка резанием — Вибрации

Наиболее высокие эксплуатационная прочность и сопротивляемость ударам, вибрациям и выкрашиванию в группе вольфрамовых сплавов для инструментов при обработке резанием металлов и неметаллических материалов, при наименьших износостойкости и допустимой скорости резания  [c.545]

Чистота поверхности непосредственно зависит от метода обработки и режимов резания. Проектируя технологический процесс, всегда следует иметь в виду, что неровности на поверхности являются следствием геометрии режущего инструмента, пластических деформаций обрабатываемого металла в процессе резания и вибраций при резании металлов.  [c.145]


При обработке резанием металл впереди резца переходит в пластическое состояние под действием сил резания и повышенной температуры. Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от режимов резания и вязкости материала. При точении, фрезеровании, протягивании, т. е. при процессах, происходящих с относительно небольшими скоростями, но с большими силами резания, поверхностный слой наклепывается на значительную глубину. При шлифовании вследствие высоких температур в поверхностном слое возникают структурные превращения на глубине нескольких сотых миллиметра например, после шлифования наружный слой стальной детали, закаленной на мартенсит, оказывается закаленным на аустенит следующий слой — на троостит, и только после этого слоя следует слой с первоначальной мартенситной структурой. На качество поверхности влияют смазочно-охлаждающие жидкости. Они уменьшают трение между инструментом и заготовкой и понижают температуру трущихся поверхностей. Наклеп и шероховатость поверхности зависят от вибрации станка, инструмента и заготовки. Колебательные движе-  [c.19]

Преимущества плоского шлифования особенно ощутимы при обработке прерывистой поверхности, имеющей сложный контур. При фрезеровании и строгании прерывистых поверхностей необходимо снижать режимы резания, так как зуб фрезы или резец несколько раз пересекает литейную корку. Кроме того, у чугунных корпусов выкрашивается металл при выходе режущего инструмента с поверхности резания, появляются вибрации системы.  [c.152]

Происхождение волнистости связано с неравномерностью процесса резания при обработке металлов, вследствие чего возникают вибрации станка, изделия и режущего инструмента.  [c.25]

Продольная шероховатость при обработке резанием возникает вследствие образования нароста на режущей части инструмента, вызывающего вырывы частиц металла, а также за счет трения задней поверхности инструмента по обрабатываемой поверхности и вибрации.  [c.39]

При определении скорости резания по этой формуле задаются стойкостью резца Т, а значение соответствующих коэффициентов и показателей степеней берут из таблиц с учетом режимов резания. При обработке металлов резанием возникает вибрация.  [c.324]

При обработке металлов резанием усиливается вибрация резца и заготовки. В институтах и на заводах проведены многочисленные исследования вибраций при резании и определены способы борьбы с ними. Следует заметить, что гашение вибраций, появляющихся в процессе резания, затруднено из-за широкого диапазона частот и амплитуд колебаний, возникающих при работе.  [c.223]


В процессе резания возникают вибрации инструмента, заготовки и станка. Причины возникновения вибрации при токарной обработке следующие колебания сил сопротивления металла в результате периодического скалывания элементов стружки и наростообразования  [c.207]

Вибрации. В процессе резания возникают вибрации инструмента, заготовки и станка. Причины вибраций колебание действия сил сопротивления металла резанию в процессе скалывания элементов стружки (см. 76) колебание действия сил сопротивления металла при неравномерном припуске на обработку неуравновешенность патрона или заготовки внешние колебания, передаваемые через фундамент от других машин, работающих вблизи станка. Вибрации нарушают нормальную работу, снижают стойкость инструмента, ухудшают качество обработки, ускоряют износ деталей станка, нарушают безопасность работы.  [c.151]

Большое значение приобретает адаптивное управление режимами резания в зависимости от условий обработки. В качестве управляемых могут быть использованы следующие параметры максимально возможный съем металла, который определяется по крутящему моменту на шпинделе или по величине отжатия шпинделя станка или детали максимальная производительность обработки, которая заключается в нахождении оптимального соотношения между максимально возможным съемом металла и износом инструмента точность обработки, которая достигается измерением деталей и подналадкой положения режущих инструментов в процессе обработки класс чистоты обработанной поверхности, который определяется непрерывным измерением шероховатости поверхности или косвенным путем, например по вибрации станка минимальные затраты на обработку — один из основных параметров, для обеспечения которых и создаются адаптивные системы.  [c.158]

Модернизация оборудования проводится в том случае, когда мощность привода и число оборотов шпинделя существующего исполнения станка оказываются недостаточными для применения рациональных режимов обработки металлов. Опыт показывает, что многие существующие фрезерные станки обладают большим запасом прочности и долговечности и поэтому легко поддаются модернизации. При этом особое внимание нужно уделять повышению жесткости станков, так как с повышением скорости резания могут появиться вибрации.  [c.200]

ВК2. Весьма высокая износостойкость и наивысшая допустимая скорость резания. Умеренные прочность, сопротивляемость ударам, вибрациям и выкрашиванию. Чистовое, получистовое и чистовое с малым сечением среза (типа алмазной обработки) точение при непрерывном резании, окончательное нарезание резьбы, развертывание отверстий и другие аналогичные виды обработки чугуна, цветных металлов и их сплавов и неметаллических материалов, а также закаленных сталей. Мокрое волочение проволоки из стали, цветных металлов и сплавов.  [c.112]

ВК4. Высокая износостойкость. Хорошо сопротивляется ударам, вибрациям, выкрашиванию. Стойкость в 1,5—2,5 раза выше, чем у сплава ВК6, и в 2—4 раза выше, чем у сплава ВК8. Черновое точение при неравномерном сечении среза и непрерывным резании, черновое фрезерование, рассверливание и растачивание нормальных и глубоких отверстий, черновое зенкерование. Отрезка токарными резцами при обработке чугуна, цветных металлов и их сплавов, неметаллических материалов, титана и титановых сплавов, а также нержавеющих сталей и жаропрочных сталей и сплавов.  [c.113]

Колебания при обработке металлов резанием определяются возмущающими силами и свойствами упругой системы соотнощение между этими параметрами определ-яет возможность возникновения вибраций при резании и их интенсивность — амплитуду и частоту. Возмущающие силы в зависимости от физического существа механизма возбуждения вибраций, действующего на упругую систему станок —деталь — инструмент, могут создавать автоколебания и вынужден-ные колебания. Кроме этого, при отдельных видах механической обработки существенное значение иногда приобретают другие виды колебаний, обусловленные, например, мгновенным приложением и снятием силы, что имеет место при врезании и выходе инструмента в начале и конце механической обработки заготовки.  [c.12]


ВИБРАЦИИ ПРИ ОБРАБОТКЕ МЕТАЛЛОВ РЕЗАНИЕМ  [c.13]

Р ы ж к о в Д. И. Гашение вибраций при скоростной обработке металлов резанием. Сб. Передовая технология машиностроения , АН СССР, 1955.  [c.246]

Магниевые сплавы. Основное преимущество магниевых сплавов по сравнению с остальными промышленными металлами — небольшая плотность (1700... 1800 кг/м ). Все магниевые сплавы имеют сравнительно высокую прочность (а = 200...400 МПа, 5 = 6...20%), хорошо поглощают вибрации. Однако из-за пониженного (4,3 10" МПа) модуля упругости пригодны лишь для мало нагруженных деталей. Магниевые сплавы обладают низкой коррозионной стойкостью, особенно в контакте с другими металлами. Недостатком также являются трудности литья и обработки давлением. Магниевые сплавы удовлетворительно свариваются дуговой сваркой в защитной среде инертных газов и хорошо обрабатываются резанием.  [c.219]

При таких режимах обработки поверхность изделия получается рваная и волнистая в результате вибрации системы инструмент — деталь — станок. Все это приводит к низким физико-механическим характеристикам приповерхностного слоя металла обрабатываемой детали, а следовательно, и к низкой усталостной прочности. Область Б охватывает оптимальные режимы резания, обеспечивающие высокую производительность труда, требуемую микрогеометрию поверхности, нормальную стойкость инструмента и удовлетворительное физико-механическое качество поверхности. Область В относится к режимам резания, трудно или вообще неосуществимым на практике на данном оборудовании при обработке данного материала. Эта область должна уменьшаться за счет увеличения области Б при усовершенствовании инструмента, оборудования и методов обработки.  [c.147]

Какой следует установить критерий износа резца Износ резца до точки а (см. рис. 77) не будет экономичным, так как резец придется перетачивать слишком часто. При катастрофическом износе, соответствующем точке с, во время переточки резца придется удалить большой слой металла. При большом износе резца по задней поверхности увеличиваются силы резания, повышается температура резания, возрастает шероховатость обработанной поверхности, снижается точность обработки, появляются вибрации, что особенно недопустимо при чистовой обработке. Существует несколько критериев (признаков) износа резцов.  [c.77]

При обработке сталей, в особенности вязких, вибрации сильнее, чем при обработке чугунов. При увеличении НВ и Td обрабатываемого металла вибрации уменьшаются при возрастании относительного удлинения и относительного сужения — увеличиваются. При росте скорости резания вибрации сначала возрастают, а затем уменьшаются чем больше подача, тем меньше величина скорости резания, начиная с которой уменьшаются вибрации. При увеличении глубины резания (ширины среза) вибрации ири продольном точении возрастают.  [c.82]

Вследствие хрупкости твердых сплавов передний угол для них нужно брать меньшим, чем для резцов из быстрорежущей стали, а в отдельных случаях (при обработке прочных и твердых металлов) — отрицательным (см. рис. 111, г). При положительном значении угла у пластинка в основном испытывает деформации изгиба и среза (рис. 113, а), т. е. деформации, которые плохо выдерживают твердые сплавы. При отрицательном же угле у пластинка испытывает в основном деформацию сжатия (рис. 113,6), которую твердые сплавы хорошо выносят. Отрицательный передний угол не только изменяет характер деформации пластинки (что повышает ее прочность), но также содействует и удалению центра давления стружки от режущей кромки, что особенно важно при ударной нагрузке. При положительном угле у (рис. 114, а), в случае прерывистого резания удар придется на саму режущую кромку. При отрицательном же значении переднего угла (рис. 114,6) удар в момент соприкосновения с заготовкой придется не на режущую кромку, вследствие чего она будет меньше подвергаться разрушению. Угол —у вызывает, по сравнению с углом +y, повышение сил, действующих в процессе резания (см. рис. 91), что приводит к вибрациям, снижению точности обработки и повышает расход мощности, затрачиваемой на резание, а потому применять резцы с отрицательным передним углом необходимо только в случае крайней необходимости.  [c.117]

При установке резца выше линии центров (при внешнем точении) условия обработки облегчаются, так как вследствие уменьшения угла резания уменьшается и усилие резания. Однако этот способ установки имеет и недостатки, а именно вершина резца под действием усилия резания имеет тенденцию отклониться в тело изделия, т. е. снимать больший слой металла, чем было предусмотрено, и, кроме того, при чрезмерном подъеме вершины в случае быстрого повышения давления, вызванного неожиданным попаданием твердых частиц в материале, резец может прогнуться и даже сломаться такой резец, как принято говорить, работает с заеданием. Последствием заедания являются нечистая поверхность обработки детали и значительные вибрации.  [c.30]

При плоской передней поверхности для таких металлов, как чугун, бронза, передний угол выбирается положительным в пределах 8—15° для резцов с пластинками твердого сплава и быстрорежущей стали. Для стали большей твердости, а также закаленной стали передний угол приходится выбирать отрицательным в пределах минус 5—25°, причем с повышением твердости абсолютная величина угла должна быть увеличена. Эти же резцы необходимо применять при прерывистом резании, при наличии ударов, а также при обработке заготовок с неравномерными припусками. При таком расположении пластинка работает на сжатие, причем начальная точка контакта на передней поверхности резца отходит от его вершины. Это предохраняет режущую кромку от случайных сколов и способствует повышению стойкости резца. Однако при отрицательном переднем угле сила резания возрастает, в особенности ее составляющие — радиальная Ру и осевая Р . Вместе с ними повышается и потребная мощность на 10—25%, Поэтому прибегать к использованию резцов с отрицательными передними углами следует только в силу необходимости, тем более, что при работе у них часто появляется склонность к вибрациям.  [c.156]


Геометрические параметры режущей части резца при правильном выборе могут уменьшить вибрации или даже совершенно их устранить. При рассмотрении значения каждого геометрического параметра были затронуты вопросы, связанные с вибрациями при обработке металлов резанием.  [c.168]

Сплав марки ВК8 имеет более высокие прочность и сопротивляемость ударам, вибрациям и выкрашиванию, чем сплавы марки ВК6 предназначен для чернового обтачивания при неравномерно. сечении среза и прерывистом резании для строгания чернового фрезерования сверления чернового рассверливания и растачивания литых нормальных и глубоких отверстий, чернового зенкерования и других видов обработки чугуна, цветных металлов, неметаллических материалов, Жаропрочных сталей.  [c.21]

Вибрации при резании металлов. В процессе резания металлов при определенных условиях возникают вибрации (колебания). Появление вибраций во многих случаях является основной причиной, ограничивающей возможность повышения режимов резания, а следовательно, и производительности труда. Вибрации при резании металлов чрезвычайно вредно отражаются на стойкости инструмента. Даже весьма слабые вибрации препятствуют достижению высокого класса чистоты обработанных поверхностей. При прочих равных условиях вероятность возникновения вибраций при обработке чугуна значительно меньше, чем при обработке стали.  [c.102]

Применение вибрации при обрабогке металлов. Вибрацию применяют как при обработке давлением, так и при обработке резанием. При обработке давлением используют эффект понижения предела текучести (см. гл. IV, параграф 3). Вибрация режущего инструмента (резцов, сверл, метчиков) обеспечивает эффективное и надежное дробление стружки, образующейся в зоне резания, что является одним из  [c.456]

Предлагаемая читателям книга И. Дж. А. Армарего и Р. X. Брауна ценна прежде всего тем, что в ней удачно сочетается теоретический анализ явлений, сопровождающих процесс резания (пластического деформирования металлов, трения, износа инструментов, вибраций и других физических явлений) с результатами изучения конкретных операций механической обработки и вопросов экономики, имеющих непосредственное практическое значение. Наряду с описанием традиционных процессов резания, основанных на деформировании и разрушении поверхностного слоя заготовки, в книге описываются электрофизические, электрохимические и лучевые способы обработки.  [c.5]

Марка ВК8. Более высокая прочность и сопротивляемость ударам, вибрациям и выкрашиванию, чем сплав ВК6, при меньших износостойкости и допустимой скорости резания. При черновом точении серого чугуна скорости резания до 125 м/мин. Черновая обработка резанием при неравномерном сечении среза и прерывистом резании чугуна, цветных металлов и их сплавов и неметаллических материалов, специальных труднообрабатываелшх жаропрочных сталей и сплавов. Волочение и калибровка прутков и труб из стали, цвстаых металлов и их снлавов. Быстроизнашиваюш,иеся детали машин и приспособлений. Вращательное бурение слабых горных пород. Распиловка мрамора и известняка.  [c.167]

Относительное положение сопряжения винт—гайка при попутном езеротании в начальный момент работы зуба изображено на фиг. 7, в. Зазор в этом сопряжении и в данном случае располагается справа, но как только зуб фрезы выходит из металла, сила резания исчезает (или уменьшается). Движение стола в этот момент прекращается (или замедляется) до тех пор, пока виток вращающегося винта не упрется своей правой стороной в гайку и не начнет двигаться вдол(. своей оси. Зазор за это время переходит на левую сторону витков (фиг. 7, г). При врезании в металл следующего зуба снова возникает большая сила резания, под действием которой зазор перемещается на правую сторону витков, что вызывает новый скачок стола, сопровождающийся ударом. Указанные явления происходят при выходе из металла и врезании в него каждого зуба фрезы, что и обусловливает возникновение вибраций, снижающих качество обработки часто в недопустимой степени.  [c.29]

Термин адаптивное управление в случае операций обработки деталей на станках относится к такой системе, в которой производится измерение определенных выходных переменных процесса, с тем чтобы результаты этих измерений использовать для управления скоростями резания и (или) подачи. В системах механической обработки с адаптивным управлением использовались, например, такие переменные, как биения шпинделя, сила, момент, температура резания, амплитуда вибраций, затрачиваемая мощность и др. Иными словами, почти все параметры процесса резания металла, которые поддаются измерению, пытались использовать в экспериментальных системах АУ. Причины разработки адаптивных систем механической обработки заключаются в стремлении повысить эффективность вьшолнения этих процессов. Типичными показателями эффективности механической обработки служат темп удале-  [c.241]

Износ контактных поверхностей при низких температурах резания, не оказывающих влияния на скорость износа, происходит в основном путем последовательного отрыва частиц инструментального материала в результате усталостного разрушения под действием многократного адгезионного воздействия обрабатываемого металла. Скорость этого так называемого усталостного износа зависит главным образом от величины сил адгезии на изнашиваемых поверхностях и частоты адгезионных воздействий. Например, в случае точения закаленной стали марки 9Х твердостью НС оЗ со скоростью резания 0,14 м сек быстрорежущими резцами уменьшение толщины среза до величины менее 0,02 шл уменьшает устойчивость нароста и резко увеличивает износ по задним поверхностям. Еще более резко возрастает износ в результате увеличения частоты срывов нароста в случае возникновения вибраций из-за образования стружки надлома при увеличении толщины среза (до 0,22 жм). В случае обработки стали марки 9Х твердостью НЯСАО, когда нарост более устойчив, в аналогичных условиях при изменении толщины среза износ не возрастает.  [c.166]

В процессе механической обработки в зоне резания происходят сложные и взаимосвязанные между собой физические явления пластическая деформация срезаемого металла, стружкообразова-ние, тепловые явления, определяющие усилия резания и расходуемую мощность, износ инструмента, вибрации системы станок—деталь—инструмент и, следовательно, производительность и точность е лпнческой обработки, качество поверхности и стойкость инструмента.  [c.4]

Как и хрупкий алмазный режущий инструмент, минералокера-мика наиболее успешно может быть применена при чистовой и полу-чистовой обработке металлов при отсутствии ударов и вибраций. Практика показывает, что минералокерамический инструмент обеспечивает высокую производительность и при обдирке таких материалов, как чугун, цветные металлы и др., имеющие малую ударную вязкость. Для успешной эксплуатации минералокерамического инструмента необходимо применение новых методов и идей в практике резания металлов.  [c.38]

Наличие радиального усилия являетря крайне нежелательным тому, что оно бывает главным источником вибраций при обработке-металлов резанием. Оно вызывает изгиб тонких и длинных деталей, обрабатываемых на токарных станках, изгиб оправок и борштанг при расточке отверстий на токарных и расточных станках, изгиб оправок при работе на фрезерных станках и т. п.  [c.42]


Качество обрабатываемой поверхности ухудшается еще и тем, что при крупных наростах нарушается правильность подачи резца. Наблюдаются периодические срывы подачи в течение. цвух-трех оборотов шпинделя, приводящие к вибрациям, вследствие чего обрабатываемая поверхность делается шероховатой. Отсюда следует, что образование нароста нежелательно при чистовой обработке, когда необходимо получить гладкую поверхность. Как показали опыты Усачева и ряда других исследователей, нарост образуется во всех случаях резания сейчас же после начала резания, но не всегда удерживается на лезвии инструмента. Нарост не удерживается на инструменте в тех случаях, когда процесс резания протекает прерывисто (фрезерование, строгание), так как в этих случаях нарост, не будучи постоянно прижат стружкой к передней грани резца, периодически отпадает. То же самое происходит при резании хрупких металлов, т. е. при стружках надлома, и, наконец, при работе с большими скоростями резания вследствие размягчения нароста под влиянием высоких температур. Согласно данным различных экспериментаторов нароста не бывает при очень малых и очень высоких скоростях резания. При скоростях резания свыше 70—80 MjMUH нарост исчезает, и обрабатываемая поверхность становится чище. С другой стороны, при небольших скоростях до (3--5 MjMUH) нароста также не бывает. Можно предположить, что при очень малых скоростях температура столь незначительна, что застаивающиеся слои стружки не удерживаются на резце и удаляются вместе со всей стружкой.  [c.87]

Марка ВКЗМ. За счет мелкозернистой структуры весьма высокая износостойкость. Умеренная прочность, сопротивляемость ударам, вибрациям я выкрашиванию. При точении закаленных сталей скорости резания до 5QmImuh. Чистовая, получистовая и чистовая с малым сечением среза (тина алмазной) обработка серого чугуна, цементованных и закаленных углеродистых и легированных сталей и весьма твердых чуг5 нов. Мокрое волочение нроволоки из стали, цветных металлов и их сплавов. Для инструментов и детален, работающих в условиях интенсивного абразивного износа (инструмент для правки шлифовальных кругов, сопла пескоструйных аппаратов и другой аналогичный инструмент).  [c.165]

Алмазно-расточные станки относят к группе отделочных станков. Они предназначены для тонкого растачивания точных отверстий в заготовках алмазным и твердосплавным режушим инструментом. Для растачивания отверстий в стальных заготовках применяют резцы с пластинками из титанокобальтового сплава, а для растачивания отверстий Б чугунных заготовках — из вольфрамокобальтового сплава. Режущую часть резцов для обработки заготовок из цветных металлов и сплавов изготовляют из технических алмазов. Резцы крепят в специальных оправках, которые обеспечивают высокую жесткость технологической системы, отсутствие биений и вибраций и возможность тонкой регулировки вылета резца. Алмазно-расточные станки оснащены быстроходными расточными головками и бесступенчатыми гидравлическими приводами для осуществления подач, что позволяет вести обработку при больших скоростях резания (до 1000 м//мин) и устойчивых малых подачах (менее 0,04 мм/об).  [c.530]

ВК2 обладает наибольшей для группы ВК износостойкостью и допустимой скоростью резания наименьшей прочностью и сопротивляемостью ударам и вибрации предназначен для чистового и по-лучистового точения при непрерывном, резании окончательного нарезания резьбы развертывания отверстий и других аналогичных видов обработки чугуна, цветных металлов и их сплавов и неметаллиг ческих материалов (резины, фибры, пластмассы).  [c.13]

Неприятным спутником процессов механической обработки металлов является вибрация. Она снижает точность обработки, сокращает срок службы станков, вызывает поломку инструментов. Когда резко возросли скорости резания, вибрация стала особенно ощутимой помехой. Но мы уже приводили примеры того, как инженерная мысль обнаруживала во вредном явлении положительные стороны. Умело использовать их — такова диалектика научно-технического творчества. И в то время как одни ученые и конструкторы отыскивали пути устранения вибрации, другие нашли способы приручить ее, управлять ею, доверив ей важную роль в процессе металлообработки. Теоретический анализ и эксперименты показали, что заставляя резец совершать колебательные движения с определенной частототой и в нужном направлении, можно повысить качество механической обработки, увеличить скорости реза-  [c.133]

Строгальные резцы. Эти резцы работают в более тяжелых усло-вия с, чем токарные, так как, врезаясь в обрабатываемый материал с полным сечением среза, резец испытывает удар, что отрицательно сказывается на его стойкости. Строгальные резцы разделяют на проходные (обдирочные и чистовые).отрезные, подрезные, пазовые. Проходные строгальные резцы применяют для строгания плоскостей с горизонтальной подачей, а подрезные — для обработки вертикальных плоскостей с вертикальной подачей. Отрезные и прорезные строгальные резцы используют нри отрезке и прорезке узких пазов и работают с вертикальной подачей. Резцы чистовые с широкой лопаткой применяют для 1истовой обработки широких плоскостей с большой горизонтальной пода-чей. Строгальные разцы применяют преимущественно с изогнутой рабочей частью. Это избавляет от вибрации и обеспечивает более спокойное протекание процесса резания, особенно при резких колебаниях усилий резания при врезании, изменениях сечения срезанного слоя, наличии твердых включений в обрабатываемом металле и т. п.  [c.241]

Тонкое (алмазное) точение используют при обработке наружных цилиндрических и конических поверхностей, а также торцов заготовок. При этом достигается параметр шероховатости поверхности Ra = 0,32 -н 1,25 мкм, а точность размеров обработанных деталей соответствует 2-му классу. Тонкое точение проводят с малой подачей (0,02—0,05 мм/об), малой глубиной резания (0,05— 0,15 мм) и высокой скоростью (300—3000 м/мин). Резание с малыми сечениями стружки, а следовательно, и с малыми силами резания позволяет обтачивать заготовки с высокой точностью. Высокая точность обработки и высокие скорости резания предъявляют повышенные требования к станкам для тонкого точения главные из них высокая частота вращения шпинделя (2000—6000 об/мин) малые подачи (0,02—0,05 мм/об) высокая точность вращения шпинделя (радиальное биение не более 0,005 мм) высокая точность и большая жесткость всех элементов станка отсутствие колебания (вибраций) при большой частоте вращения шпинделя, что достигается наличием ременных передач. Обычные токарные станки не обеспечивают выполнения вышеуказанных требований, в связи с чем для тонкого точения, как правило, применяют специальные токарные станки. В качестве режущего инструмента для тонкого точения применяют резцы, оснащенные пластинами из твердых сплавов Т30К4, для обработки заготовок из стали, и пластинами из твердых сплавов ВК2 и ВКЗ — для заготовок из чугуна. Для заготовок из высокопрочных металлов используют резцы, оснащенные режущими элементами из эльбора.  [c.121]


Смотреть страницы где упоминается термин Металлы Обработка резанием — Вибрации : [c.194]    [c.8]    [c.50]    [c.9]    [c.382]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.464 ]



ПОИСК



Вибрации при обработке резанием

Вибрации при резании металлов

Вибрация

Вибрация при обработке металлов

Обработка металлов резанием

Обработка резанием

Резание металлов



© 2025 Mash-xxl.info Реклама на сайте