Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб и кручение простой

Под действием внешних нагрузок напряженное состояние детали может быть простым и сложным. При простом напряженном состоянии деталь подвергается только растяжению или сжатию, изгибу или кручению. Сложным напряженным состоянием будет такое когда в расчетах на прочность наряду с нормальным напряжением в поперечном сечении бруса приходится учитывать и касательное напряжение, например, когда деталь подвергается одновременно изгибу и кручению.  [c.152]


Если представить себе брус, испытывающий простое растяжение, и допустить, что в его поперечном сечении возникают нормальные напряжения, равные 03, , вычисленному по приведенной формуле, то согласно принятой теории прочности состояние этого бруса равноопасно (эквивалентно) состоянию рассматриваемого бруса, испытывающего одновременно изгиб и кручение. Конечно, при этом предполагается, что заданный брус и воображаемый эквивалентный брус изготовлены из одинакового материала.  [c.309]

Основное наиболее трудное при изложении рассматриваемой темы — это довести до сознания учащихся необходимость в гипотезах прочности, обеспечить умение распознавать, в каких случаях нагружения бруса следует при его расчете применять гипотезы прочности. Здесь важно, чтобы учащиеся не просто запомнили, что при изгибе и кручении или кручении и растяжении надо применять гипотезы прочности, а ясно понимали, почему это необходимо.  [c.159]

Совместное действие простых деформаций. Многие детали механизмов испытывают совместное действие изгиба и растяжения (сжатия), изгиба и кручения, кручения и растяжения (сжатия). В этих случаях, в соответствии с принципом суперпозиции, напряжения в детали можно находить для каждой простой деформации независимо от остальных.  [c.191]

Совместное действие нормальных и касательных напряжений. При совместном действии изгиба и кручения или кручения и растяжения (сжатия) простое суммирование невозможно ввиду разного характера напряжений (нормальные и касательные). Достоверные расчетные формулы для таких случаев могут быть получены на основании теорий прочности. Так, например, при совместном действии изгиба и кручения опасными являются точки, в которых нормальные напряжения от изгиба и касательные напряжения от кручения одновременно имеют наибольшие значения. Главные напряжения при изгибе с кручением прямого бруса круглого поперечного сечения могут быть найдены по следующим формулам (ось Ох полагаем совпадающей с геометрической осью бруса)  [c.191]

Схема приложения нагрузок. При анализе накапливания усталостных повреждений, а следовательно, и закономерностей образования нераспространяющихся усталостных трещин кроме параметров режима нагружения необходимо учитывать также схему приложения нагрузки. На практике обычно реализуются смешанные нагружения, специфические условия работы деталей (срез, смятие и др.). Однако возникновение в этих условиях нераспространяющихся усталостных трещин практически не исследовано. Подавляющее число исследований этих трещин выполнено при осуществлении основных простых схем нагружения, таких, как одноосное растяжение-сжатие, изгиб и кручение.  [c.81]


Аналогия между упругим и наследственно-упругим телами может быть распространена и на задачу отыскания напряженно-деформированного состояния. А именно, если требуется решить такого рода задачу для наследственно-упругого тела, то следует сначала решить эту же задачу для упругого тела, а затем в решении заменить все упругие модули на соответствующие операторы наследственной упругости (принцип Вольтерра). В частности, если решение упругой задачи не зависит от упругих постоянных материала, то оно без изменений переносится на случай наследственно-упругого тела. Простейшие примеры применения этого принципа будут рассмотрены в главах XI и X I, посвященных изгибу и кручению.  [c.767]

Расчетную модель машиностроительной конструкции можно представить совокупностью взаимосвязанных простейших элементов, таких, как масса, жесткость, стержень, пластина или оболочка. Колебания этих элементов описываются достаточно простыми математическими зависимостями. Линейные размеры подсистемы, представляемой простейшим элементом, зависят от расчетной частоты, и с ее увеличением для удовлетворительной точности решения систему приходится разделять на все большее число элементов. Так, например, тонкостенная сварная балка в области низких частот может рассматриваться как сосредоточенная масса, в области средних частот — как стержень, а на высоких частотах — как набор пластин. Частотный диапазон применения стержневой модели значительно расширяется, если учесть сдвиг и инерцию поворота сечений при изгибе и кручении. Эти поправки особенно существенны для балок с малым отношением длины к высоте, набором которых можно представить балку переменного поперечного сечения.  [c.59]

Набор или список степеней свободы модели зависит от типа элементов, используемых при моделировании. Так, в узлах элементов работающих на изгиб и кручение (элементы балки и оболочки) определены все шесть компонентов смещений, а в узлах трехмерных элементов - только перемещения вдоль осей координат. Если в модели нет элементов, работающих на изгиб, то список степеней свободы не будет содержать углы поворота элементов в узлах. Это не означает, что их нет, просто углы поворота не оказывают влияние на величину полной Потенциальной энергии конструкции.  [c.186]

Условия циклического нагружения элемента материала описываются, вообще говоря, большим числом независимых параметров. Даже в случае относительно простого синфазного нагружения, когда все компоненты напряжений изменяются с равными периодами с совпадением по фазе, либо со сдвигом фаз на 7г, количество независимых параметров может достигать 12. Опытная проверка критериев усталостного разрушения при сложном напряженном состоянии чрезвычайно трудоемка, и имеющиеся экспериментальные данные немногочисленны. Большинство известных исследований посвящено плоскому неоднородному напряженному состоянию, которое возникает в случае одновременных синфазных изгиба и кручения сплошных цилиндрических образцов.  [c.347]

Для тех читателей, которые ранее не прошли инженерную подготовку, ознакомление с элементарным учебником по сопротивлению материалов поможет понять основные соотношения, существующие между напряжениями и деформациями, напряженное состояние жестких элементов простейшего сечения, находящихся в условиях изгиба и кручения, и, кроме того, поможет усвоить теоретические вопросы, разбираемые в данной книге.  [c.12]

Как оценить прочность в других случаях, например при совместном действии изгиба и кручения, когда действуют кроме нормальных напряжений и касательные, или в случае тонкостенных сосудов Вывод напрашивается один необходимо привести сложное сопротивление к простому растяжению.  [c.128]

До сих пор были рассмотрены случаи, когда элементы конструкций, подверженные действию внешних сил, испытывали только одну из простых деформаций осевое растяжение или сжатие, сдвиг, изгиб и кручение. В действительности, во многих случаях элементы конструкций при работе испытывают одновременно не одну из перечисленных деформаций, а две или больше.  [c.183]


В пособии, кроме основного материала по сопротивлению материалов, изложенного в соответствии с Программой Завода-втуза при ЛМЗ, приведены задачи по расчету коленчатых стержневых систем на прочность и жесткость, простых и толстостенных цилиндров, определению контактных напряжений, пространственному расчету кривого бруса на боковой изгиб и кручение и т. д. Рассмотрены динамические задачи  [c.2]

В механике под нитью понимается материальная система одного измерения, которая под действием приложенных сил может принять форму любой геометрической линии. Нить, не оказывающая сопротивления изгибу и кручению, называется идеальной или абсолютно гиб гой нитью. Идеальная нить может быть растяжимой или нерастяжимой (крайняя абстракция). В дальнейшем, при отсутствии специального указания, под термином гибкая нить или просто нить будем понимать идеальную нерастяжимую или растяжимую нить.  [c.7]

Если в качестве простейших опытов для определения констант материала принять опыты на изгиб и кручение при знакопеременном цикле, то, переходя от октаэдрических напряжений к главным компонентам тензора напряжений, получаем расчетное урав-  [c.187]

Попытку учесть влияние градиентов напряжений на величину предела текучести пластичных материалов при изгибе и кручении стержней простейшей формы (прямоугольник, ромб, круг, двутавровый стержень — при изгибе, полный стержень — при кручении) сделал И. А. Одинг [326], вводя в условие постоянства максимальных касательных напряжений некоторый коэффициент эквивалентности, величина которого определяется геометрией сечения. Для полого образца из пластичного материала предел текучести при кручении, по Одингу, может быть определен И8 выражения  [c.203]

Таким образом, в самом общем случае действия сил на брус в нём возникают четыре простых деформации осевое растяжение или сжатие, два плоских изгиба и кручение.  [c.519]

Рассмотрим простейшие примеры расчета валов на изгиб и кручение. Более подробно этот вопрос рассмотрен в курсе Детали машин ..  [c.262]

Механические испытания материалов позволяют определить опасные, или предельные, напряжения при какой-то простейшей деформации. Сложные виды деформации при механических испытаниях также можно осуществить, но в этом случае разрушение наступает при различных величинах силовых факторов в сечении и зависит от их соотношения. Действительно, при совместном действии изгиба и кручения вал может разрушиться при большом изгибающем и малом крутящем моментах или, наоборот, разрушение может произойти при малом изгибающем, но большом крутящем моментах. Каждому отношению величин изгибающего и крутящего моментов соответствует определенная величина напряжений, вызывающих разрушение вала. Определить опытным путем опасные напряжения для сложного напряженного состояния при всех возможных комбинациях силовых факторов невозможно из-за трудности постановки опытов и практически неограниченного объема испытаний.  [c.257]

На практике очень часто встречаются случаи, когда стержень испытывает не один, а несколько типов деформаций одновременно, например изгиб и растяжение, изгиб и кручение и т. д. Все эти случаи принято называть сложным сопротивлением. Но для того чтобы разобраться с любым случаем деформации, необходимо вначале изучить указанные выше пять простейших типов.  [c.12]

Сочетание двух простых деформаций изгиба и кручения чаще всего встречается при расчете прямых и коленчатых валов, а также других стержней.  [c.239]

Ввиду того что при изгибе и кручении в наиболее напряженной точке сечения вала совместно действуют напряжения а и т, для суждения о прочности вала обратимся к теориям прочности ( 38). Эти теории дают возможность привести сложное напряженное состояние к простому растяжению эквивалентным напряжением о .  [c.297]

При сложной деформации бруса напряженное состояние опасной частицы может быть простым (изгиб и растяжение или сжатие) и сложным (изгиб и кручение, растяжение и кручение). Для первого случая (фиг. 273, а) остаются справедливыми условия прочности (103), (104), (105) и (106). Для второго случая (фиг. 276) условия прочности должны быть построены заново.  [c.298]

Различают деформации простые (основные) — растяжение, сжатие, сдвиг (срез), изгиб и кручение — и сложные, представляющие собой комбинации основных деформаций — сжатия или растяжения с изгибом, сжатия или растяжения с кручением, изгиба с кручением и т. д.  [c.56]

Испытания на выносливость производят при простых напряженных состояниях, получаемых повторно-переменным растяжением (сжатием), изгибом или кручением, а иногда и при сложном напряженном состоянии, создаваемом одновременным изгибом и кручением или растяжением по двум направлениям.  [c.41]

Присутствие в литой стали сетки эвтек тики понижает прочность. В то же время по теплостойкости и износостойкости литая сталь не уступает катаной. Она пригодна для инструментов простой формы (резцы, крупные сверла), работающих без значительных напряжений изгиба и кручения.  [c.1219]

В этом случае для количественной оценки пластических деформаций, в зависимости от действующих внешних нагрузок, предварительно необходимо установить закономерности снижения предела текучести при переменных нагрузках для простых однородных напряженных состояний (асимметричное растяжение — сжатие, асимметричное кручение, сочетания переменного и постоянного растяжения — сжатия и кручения на полых образцах). Затем, используя аппарат теории пластичности (теорию малых упруго-пластических деформаций, теорию течения), можно установить зависимости между внешними нагрузками и деформациями при рассматриваемых относительно сложных случаях (сочетание изгиба и кручения). Для статических условий совместное действие изгиба и кручения рассматривается в работах [6], [10], [15].  [c.371]


ВИЯХ изгиба и кручения. Сочетание высоких механических свойств и экономичности получения требуемой формы заготовки с малым припуском на последующую обработку достигают использованием горячей штамповки из стали 40Х. Шлицевый валик 1 также должен иметь высокие механические свойства, но простая форма заготовки позволяет получить ее из профильного проката стали 40Х круглого сечения. Средняя часть 2 вала нагружена только крутящим моментом, требования к механическим свойствам ниже, заготовкой может быть труба из стали 35.  [c.21]

Испытание на прочность. Прочностью материала называется его способность сопротивляться разрушающим воздействиям внешних сил. Внешние силы м. б. весьма разнообразны по величине, направлению и местам приложения. Простейшие виды деформаций, происходящие со строительными материалами, — это растяжение, сжатие, сдвиг, изгиб и кручение. Исследуя материал на прочность, образцу придают форму, наиболее соответствующую тем деформациям, к-рые желательно получить и измерить. Во время действия деформирующих сил на образец производится наблюдение за поведением материала в части изменения его поверхности.  [c.220]

Широкое распространение, особенно в машинах и механизмах, имеет деформация элементов конструкций, именуемая изгибом с кручением. Практически любой вал редуктора или аналогичного устройства, передающего мощность и трансформирующего усилия, претерпевает как изгиб, так и кручение. Хотя совсем необязательно, чтобы деформируемая таким образом деталь вращалась. Простейший пример — стойка, на которой укреплен щит с дорожным знаком. Ветровое воздействие приводит к ее изгибу и кручению. Обычно деформацию изгиба с кручением испытывают элементы конструкций с ломаной осью при силовом пространственном воздействии.  [c.169]

Выявление рациональных типов профилей, хорошо работающих при совместном действии изгиба и кручения, — задача в достаточной мере сложная. Решение ее зависит от многих факторов величины, характера и места приложения нагрузки, формы сечения, типа конструкции, в состав которой входят в качестве элементов стержня, о которых идет речь, габаритов и т. п. Если можно назвать сравнительно простой задачу о выборе рационального типа профиля, работающего только на косой изгиб, то исследование еще одновременной работы его на стесненное кручение значительно усложняет эту задачу, потому что указанные выше факторы тесно переплетаются между собой.  [c.200]

Опишем еще две деформации сравнительно простого вида - изгиб и кручение. Деформация изгиба возникает в однородном стержне прямоугольного сечения, если плоскости его торцов повернуть друг относительно друга на некоторый угол. На практике ее можно осуществить с хорошей степенью точности, закрепив один из концов  [c.78]

Интеграл перемещений. Для определения перемещений в стержневых системах, элементы которых работают на растяжение, изгиб и кручение, можно получить из теоремы Кастильяно очень простую формулу. Воспользуемся для этого вариационной записью, теоремы Кастильяно (154.2)  [c.343]

Нильсен и Ли [74] объясняли расхождение теоретических и экспериментальных результатов для тангенсов углов потерь гранулированных композитов наличием внутреннего трения между частицами в агломератах, между матрицей и включениями и трением между краями трещин внутри полимера. В этой же работе отмечено влияние внешней поверхности полимера на комплексные модули, определяемые из опытов на кручение и изгиб, и дан простой метод корректировки их значений.  [c.176]

Испытания на усталость образцов паяных соединений (ГОСТ 26446-85) проводят в много- и малоцикловой упругой и упругопластической области при растяжении-сжатии, изгибе и кручении при симметричных и ассиметричных циклах напряжений или деформаций, изменяющихся по простому периодическому закону с постоянными параметрами.  [c.248]

Испытания на изгиб и кручение часто более удобны для определения реологических постоянных, чем испытания на простое растяжение. При реологических испытаниях наблюдаемыми кинематическими величинами редко являются непосредственно деформация или скорость деформации. Чаще это смещение или скорость смещения. При простом растяжении, где деформация является чистой, полное смещение есть сумма элементарных смещений. При изгибе стержня, где имеет место новорот элементов, смещения возрастают по длине стержня, как у вращающейся стрелки какого-либо измерительного устройства. Возьмем, к примеру, в одну руку конец небольшого стержня из какого-либо упругого материала и приложим второй рукой к другому концу некоторую силу. Если сила будет растягивающей в направлении оси стержня, то перемещения свободного конца будут едва заметны. Если сила приложена ла свободном конце в направлении, перпендикулярном к оси, то в этом случае перемещения будут заметны при условии, что стержень не слишком жесткий. Чтобы сделать этот пример более определенным, предположим, что стержень изготовлен из мягкой стали с квадратным поперечным сечением площадью в 1 мм и длиной 10 см. Прикладывая растягивающую силу в 100 г, получили относительное удлинение, согласно равенству (III, т), ei = = 3 10 см и, следовательно, в соответствии с формулой (III. 9) перемещение свободного конца равно Ai = 3-10 см. Прикладывая ту же силу в направлении, перпендикулярном к оси, найдем, что перемещение будет таким же, как в центре опертой по обоим концам балки двойной длины при приложении удвоенной силы. Это перемещение в соответствии с формулой (IV. 25) равно  [c.92]

В 1882 г. Фохт (Voigt [1882, 1]) подверг критике предположение Корию, указав, что простая констатация прозрачности, без других подтверждений, не дает оснований для такого заключения относительно изотропии упругих свойств. Однако он утверждал и доказал, что решить этот вопрос можно, подвергнув испытаниям на кручение и изгиб образцы с разной ориентацией, вырезанные из стеклянной пластины с различной глубины в ней. При изгибе нейтральная плоскость выбиралась параллельной короткой или длинной сторЬне прямоугольного поперечного сечения образца. Таким образом, сравнивая определенные в опыте значения и jj, и вычисленные по ним значения коэффициента Пуассона, он мог установить, что действительно имел дело с изотропным твердым телом. Хотя испытания на изгиб и кручение делались на одних и тех же образцах, они не проводились одновременно, как в экспериментах Кирхгофа. Детали установки Фохта были разработаны им самим и описаны в его докторской диссертации в 1876 г., посвященной определению постоянных упругости каменной соли.  [c.357]

По соотношению радиуса кривизны R оси Г и diam D в соответствии с определением П.З стержни подразделяются на два класса стержни малой и большой кривизны. Для прямых стержней внутренние силовые факторы, отвечающие простейшим НДС (растяжение-сжатие, изгиб и кручение), независимы (см. главы 1,  [c.470]

Рассмотрим крыло самолета как балку. Балка имеет так называемую упругую ось если на эту ось действует подъемная снла, то в результате появляется простой изгиб без соиутствуюгцего ему кручения. Но еслн подъемная сила действует в передней части упругой оси, то в результате деформации появляются изгиб и кручение, последнее стремится увеличить угол атаки. Это, в свою очередь, увеличивает подъемную силу, и, следовательно, кручение. Конечно, упругость крыла сопротивляется этой деформации. Однако поскольку аэродинамическая сила увеличивается приблизительно с квадратом скорости полета, тогда как упругость независима от скорости, то теоретически должна сугцествовать критическая скорость, нри которой оба воздействия рав-  [c.161]


Преимуществом ковкого чугуна являются высокое отношение предела текучести к пределу прочности, относительно высокое сопротивление изгибу и кручению, низкая чувствительность к надрезу, высокая конструктивная прочность, высокая износоупорность (при перлито-ферритной структуре), сравнительно хорошее сопротивление коррозии литой поверхности, меньший удельный вес, возможность пользоваться для плавки простой вагранкой, хорошая обрабатываемость режущим инструментом и отсутствие в изделиях больших литейных напряжений. (  [c.171]

На рис. 5.2 показан наиболее распространенный двухступенчатый цилиндрический редуктор, выполненный по простой развернутой схеме, в которой каждая ступень состоит из одной пары зубчатых колес. Недостаток простых развернутых схем заключается в том, что вследствие несимметричного расположения зубчатых колес относительно опор нагрузка между подшипниками распределяется неравномерно, а в результате деформаций изгиба и кручения валов возникает концентрация нагрузки по длине зубьев. Для ограничения концентрации приходится применять валы с повышенной жесткостью. В двух- и трехступенчатых передачах более совершенными с точки зрения распределения нагрузки являются редукторы, выполненные с раздвоенными зубчатыми колесами (см. рис. 51, г, o, з). В двухступенчатых передачах раздвоенной ложет быть быстроходная (см. рис. 5.1, г и рис. 5.3) или тихоходная (см. рис. 5.1, д) пара. Большее применение имеют передачи с раздвоенной быстроходной парой. Более нагруженная тихоходная пара в таких конструкциях может быть выполнена с весьма широкими зубчатыми колесами (г 2 > 0,6), так как за счет симметричного расположения относительно опор в зацеплении этой пары устраняется концентрация нагрузки по длине зуба от изгиба валов, что особенно важно для плохо прирабатывающихся зубчатых колес. К последним относятся закаленные зубчатые колеса с твердостями рабочих поверхностей НВ > 350, а также незакаленные колеса, работающие при резких из-г енениях нагрузки или при скоростях > 15 м сек.  [c.119]

Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]

Теория деформаций анизотропного тела. Теория деформаций изотропного тела потребовала только двух констант (коэфициента Лямэ). Анизотропное тело, упругие свойства которого по всем направлениям различны, ие м. б. охарактеризовано только двумя постоянными. Пуассон и Кошп одновременно указали для анизотропного тела 36 постоянных, из к-рых кансдое указывает на то или другое качество тела. Вследствие существования упругого потенциала (53), доказанного В. Томсоном, количество постоянных сокращено до 21. Для нек-рых кристаллич. систем это число м. б. еще уменьшено, но не ниже 3. Закон Гука для анизотропного тела и.чи постулируется или м. б. выведен из теории кристаллич. решетки (Борн). Рассмотрено состояние анизотропных тел под всесторонним давлением, при простых растяжении и сжатии, также изгибе и кручении. В технич. вопросах теория анизотропных тел занимает еще малое место, несмотря на то что металлы, железобетон и другие материалы больщей частью анизотропны. Губер вывел уравнение состояния ортогонально-анизотропной пластины, Штейерман распространил теорию изгиба симметрично расположенных и нагру-л енных оболочек (Лове-Мейснер) на случай анизотропных стенок.  [c.222]


Смотреть страницы где упоминается термин Изгиб и кручение простой : [c.547]    [c.107]    [c.464]    [c.381]    [c.959]    [c.191]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.45 ]



ПОИСК



Изгиб с кручением

Кручение простое

Простые типы напряженных состояний тонкостенные круглые трубы под действием внутреннего давления, кручение тонкостенных труб и круглых валов, чистый изгиб цилиндрических стержней



© 2025 Mash-xxl.info Реклама на сайте