Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержневые Применение

Рис. 8.1. Основные элементы ртутно-стеклянного термометра стержневого типа. Для термометров, имеющих основную шкалу, не включающую температуру точки льда, может быть предусмотрена вспомогательная шкала, содержащая эту температуру. Отметка глубины погружения предусмотрена только для термометров частичного погружения. В газонаполненных термометрах предусмотрена расширительная камера для предохранения от чрезмерного давления при их работе на верхнем пределе диапазона применения, а также в других термометрах для избежания поломки при перегревах. 1—резервуар 2—-корпус 3 — камера сжатия 4 — расширительная камера 5 — основная шкала 6 — отметка глубины погружения 7 — вспомогательная шкала. Рис. 8.1. <a href="/info/279900">Основные элементы</a> <a href="/info/3932">ртутно-стеклянного термометра</a> стержневого типа. Для термометров, имеющих <a href="/info/276720">основную шкалу</a>, не включающую температуру точки льда, может быть предусмотрена вспомогательная шкала, содержащая эту температуру. Отметка <a href="/info/181239">глубины погружения</a> предусмотрена только для <a href="/info/276637">термометров частичного погружения</a>. В газонаполненных термометрах предусмотрена расширительная камера для предохранения от чрезмерного давления при их работе на верхнем пределе диапазона применения, а также в других термометрах для избежания поломки при перегревах. 1—резервуар 2—-корпус 3 — камера сжатия 4 — расширительная камера 5 — <a href="/info/276720">основная шкала</a> 6 — отметка <a href="/info/181239">глубины погружения</a> 7 — вспомогательная шкала.

Технологический способ предупреждения газовых раковин состоит в применении стержневых смесей с малым газообразованием.  [c.65]

График может служить только для ориентировочной оценки толщины стенок. Допустимая толщина стенок сильно зависит от конфигурации отливки. Сложные отливки, формуемые в нескольких опоках с применением большого числа стержней, необходимо делать толстостенными. Большое.влияние оказывает технология литья состав формовочных и стержневых смесей, условия питания и охлаждения, устройство литниковой системы и др.  [c.91]

Рассмотрим примеры применения метода Мора для определения перемещений в стержневых системах.  [c.375]

Рассмотрим некоторые примеры применения способа Верещагина для определения перемещений в различных стержневых си-  [c.382]

Яа втором этапе (1983 - 1985 гг.) керамические стержни для производства лопаток с циклонно-вихревой системой охлаждения (см. рис. 114, а) были испытаны на основе составов А и Н (табл. 118). Однако на первоначальной стадии указанные составы неудовлетворительно прессовались. Стержневые заготовки имели микротрещины по тонким местам толщиной 0,6 - 0,8 мм. После механической доводки пресс-форм и ведения визуального контроля стержней с применением микроскопа (X. 4-7) добились качественного прессования стержневой массы.  [c.449]

Одним из самых популярных методов при расчете стержневых систем в строительной механике является, как известно, метод Лагранжа — применение начала возможных перемещений.  [c.69]

При решении задач удобнее пользоваться коэффициентом податливости, особенно целесообразно его применение при решении статически неопределимых стержневых систем — запись уравнений перемещений более компактна и алгебраические преобразования существенно упрощаются.  [c.69]

Какой из методов определения перемещений — обобщенное (или универсальное) уравнение упругой линии, графо-аналитический метод (фиктивных нагрузок) или интеграл Мора и правило Верещагина — наиболее рационален По нашему мнению, ответ однозначен — интеграл Мора и правило Верещагина. Этот метод наиболее универсален, так как применим не только к балкам, но и к любым стержневым системам и криволинейным брусьям. Он наименее формален, так как имеет четкую физическую основу, а его применение всегда требует построения эпюр, что дает дополнительные возможности для развития у учащихся соответствующих навыков. Затрата времени на определение перемещений меньше, чем при применении любого другого метода. Неоднократно проводившийся хронометра)  [c.209]


Вне рамок книги остались также некоторые специфические математические методы, которые нашли применение в так называемой технической теории упругости (статика и динамика оболочек, стержневые системы и т. п.) и в теории упругости с переменными упругими постоянными.  [c.9]

Стержневые системы, т. е. несущие силовую нагрузку конструкции из прямолинейных стержней, находят широкое применение в инженерной практике благодаря своей эффективности. Это, например, мостовые металлические конструкции (рис. 3.10), стропильные и подстропильные фермы (рис, 3.11), стальные каркасы многоэтажных здании (рис. 3.12) и т.д.  [c.60]

Эта теорема для линейных систем обладает как уже говорилось, достаточной универсальностью и вполне применима и к стержневым системам, которыми мы намерены заниматься. Однако ее непосредственное применение для определения перемещений представляет заметные неудобства.  [c.92]

Итак, мы знаем, что расчетные схемы многих стержневых конструкций представляют собой статически неопределимые системы и что условия статики, примененные сами по себе, в известном смысле бессильны. Вопрос заключается в том, как набрать нужное число уравнений для определения реакций опор и внутренних сил, как раскрыть статическую неопределимость Один из наиболее широко применяемых методов достижения этой цели состоит в следующем.  [c.108]

Из методов приближения функций наибольшее применение в синтезе стержневых механизмов получили методы интерполирования или интерполяционного приближения, метод квадратического приближения и метод наилучшего (равномерного) приближения.  [c.70]

Благодаря этим свойствам кулачно-стержневые механизмы широко используют в тех случаях, когда надо обеспечить достаточно сложные перемещения рабочих органов (инструмента) или других элементов машин, например клапанов в двигателях внутреннего сгорания. Широкое применение они нашли и в современных машинах-автоматах.  [c.35]

Наибольшее применение нашли три типа четырехзвенных стержневых механизмов  [c.200]

Значения коэффициентов k в кривошипно-кулисных механизмах значительно выше, чем в других типах четырехзвенных стержневых механизмов. Поэтому они нашли широкое применение в тех случаях, когда силы полезных сопротивлений, приложенные к машине, велики и для того чтобы снизить номинальную мощность двигателя, выгодно, чтобы интервал рабочего перемещения был возможно больше (ряд типов металлорежущих станков, насосы с вращающимися цилиндрами, рис. 182, б).  [c.242]

Этим требованиям в значительной степени удовлетворяют диэлектрические стержневые антенны. Для повышения точности контроля необходимо применение согласования сред (для устранения более мощного отраженного от передней границы слоя пучка).  [c.224]

В опубликованных ранее работах изложены некоторые результаты изучения процессов нанесения жаростойких покрытий методом газопламенного напыления [1—4]. Существенный интерес при изучении этой проблемы представляет определение степени нагрева диспергируемых частиц расплава и покрываемой поверхности в процессе нанесения покрытий и условий формирования последних. Средняя температура частиц при нанесении покрытий стержневым методом в момент их встречи с подложкой оценивалась количеством тепла, перенесенного частицами при формировании покрытия определенного веса. Для этой цели был применен специальный калориметр, с помощью которого устанавливали баланс между количеством тепла, передаваемым частицами покрываемому образцу, вызывающим его нагрев до определенной температуры, и тем количеством тепла, выделяемым нагревательным элементом калориметра, которое было необходимо для нагрева этого же образца до такой же температуры.  [c.232]

В главе 3 приведены методы расчета стержневых систем, балок, рам и некоторых типов тонкостенных элементов из композиционных материалов. Дан обзор и анализ современного состояния строительной механики, основных концепций и методов расчета. Рассмотрены задачи статики, динамики и устойчивости. Отмечены особенности области применения и пути дальнейшего совершенствования используемых методов. Рассматриваемые вопросы иллюстрированы примерами.  [c.10]


На основании теоремы об экстраполировании профильной информации на пространственную систему неровностей для оценки точности и достоверности результатов исследования профилей, а также для обоснования классификации поверхностей на базе топологии, развития идей их математического описания и оценки областей применения стержневых, конических, сферических, эллипсоидных и других моделей целесообразно использовать пространственную оценку неровностей.  [c.218]

Принцип возможных перемещений можно сформулировать и иначе, поменяв местами исходное условие и следствие если сумма работ всех внешних и всех внутренних сил системы на всяком бесконечно малом возможном перемещении равна нулю, то система находится в состоянии равновесия. При этом, разумеется, в равновесии находится как вся система в целом, так и любая ее часть, 2. Применение принципа к стержневым системам. Пусть имеем некоторую систему, например балку (рис. 15.9), загруженную какой-то нагрузкой и находящуюся в равновесии. Внешние силы.  [c.485]

Применение принципа к стержневым системам. Пусть имеем некоторую систему, например, балку (рис. 15.10), загруженную  [c.489]

Формула для перемещений в фермах была Однако его работа осталась незамеченной и практически применение после работы Мора, относящейся к самому общему случаю стержневой системы.  [c.505]

B. Л. Кирпичевым. Л. В. Ассур с первых же дней своей работы в Политехническом институте стал постоянным членом этого кружка. Здесь он ознакомил членов кружка со своими исследованиями в области кинематики механизмов 4 марта 1908 г. на заседании кружка прочитал доклад на тему Аналоги ускорений и их применение к динамическому расчету плоских стержневых систем . Полный текст работы под тем же заглавием был опубликован в 1908—1909 гг. в 9 и 10-м томах Известий СПб политехнического института , а в 11-м томе, вышедшем в свет в 1909 г., было опубликовано второе его сочинение (мемуар) на ту же тему — Основные свойства аналогов ускорений в аналитическом изложении .  [c.43]

Применением того или иного способа, ориентированного на знание плана скоростей, можно определить уравновешивающую силу. Из предыдущей главы мы знаем, что построить план скоростей принципиально возможно для всех механизмов первых трех классов и для многих механизмов четвертого класса. А так как различие между механизмом и фермой зависит лишь от степени подвижности той или иной стержневой системы, то, следовательно, с равным правом можно применить метод жесткого рычага и к определению напряжений в стержнях ферм. Сделать это можно, сочетая его с кинематическим методом Мора. Суть последнего заключается в том, что из жесткой стерн невой системы выбрасывается одно звено, напряжение в котором является искомым. При этом кинематическая цепь приобретает одну степень свободы и, следовательно, для двух точек, ограничивающих изъятый стержень, можно задаться произвольно их скоростями. Это и приводит к применению метода жесткого рычага.  [c.158]

Рассматривая фермы с устраненными стержнями, действие которых заменено силами, Ассур приходит к выводу, что к таким фермам, т. е. к системам изменяемым, также можно применить закон взаимных многогранников. Более того, если мы просмотрим доказательства закона взаимности,— говорит Ассур,— то в этих доказательствах нигде не требуется упоминания о том, что ферма представляет собой жесткую стержневую систему, и поэтому доказательство может быть отнесено к любой плоской стержневой системе. А так как всякая такая система может быть рассматриваема как проекция некоторой пространственной, т. е. такой, которую принято называть многогранником, в общем случае с неплоскими гранями, то нет решительно никаких оснований думать, что к изменяемым стержневым системам закон взаимных диаграмм не имеет применения. Наша основная задача будет  [c.163]

Расчетную модель машиностроительной конструкции можно представить совокупностью взаимосвязанных простейших элементов, таких, как масса, жесткость, стержень, пластина или оболочка. Колебания этих элементов описываются достаточно простыми математическими зависимостями. Линейные размеры подсистемы, представляемой простейшим элементом, зависят от расчетной частоты, и с ее увеличением для удовлетворительной точности решения систему приходится разделять на все большее число элементов. Так, например, тонкостенная сварная балка в области низких частот может рассматриваться как сосредоточенная масса, в области средних частот — как стержень, а на высоких частотах — как набор пластин. Частотный диапазон применения стержневой модели значительно расширяется, если учесть сдвиг и инерцию поворота сечений при изгибе и кручении. Эти поправки особенно существенны для балок с малым отношением длины к высоте, набором которых можно представить балку переменного поперечного сечения.  [c.59]

При указанных выше условиях, исходя из разработки технологического ряда, можно обходиться одним и тем же корпусом стержневого ящика со сменными вставками для всех стержней, ряда. Это, в свою очередь, обусловливает экономичность применения машинной формовки стержней даже в условиях мелкосерийного производства. Переход с изготовления одной конструкции стержня на другую сводится только к переналадке, т. е. к смене формообразующей части ящика — вставки (фиг. 194).  [c.262]

Применение менее окисленной шихты, изменение дутьевого режи.ма Раскисление металла Уменьшение содержания угля и других газообразующих веществ в формовочных и стержневых сме-  [c.361]

На практике находят применение два основных способа включения плазменных горелок (рис. 80). В первом — дуговой разряд сунц ствует менсду стержневым 1 атодом, размегценным внутри  [c.151]

Как известно, развиваемое в настоящее время направление по созданию реакторов-размножителей на быстрых нейтронах с натриевым охлаждением и окисным уран-плутониевым топливом в стержневых твэлах с покрытием из нержавеющей стали не может обеспечить необходимое время удвоения делящегося материала —6 лет. Причина этого — поглощение нейтронов натриевым теплоносителем и стальным покрытием, смягчение спектра нейтронов кислородом в окисном топливе. При применении гелиевого теплоносителя отпадает необходимость использования стали в качестве защитных покрытий и появляется возможность применения керамического монокарбидного ядер-  [c.7]


Во всех случаях, когда допускает конструкция, изгиб следует заменять более выгодными видами нагружения — растяжением, сжатие.м или срезом. Целесообразно применение стержневых или близких к ним систем, элементы которых работают преимущественно на растяжение — сжатие. Если изгибное нагружение неизбежно, то следует у.меньшать плечо изгибающих сил и увеличивать моменты сопротивления на опасных участках. Особенно это важно при консольном нагружении, наиболее невыгодном по прочности и жесткости.  [c.558]

Отметим также успешное применение в вариационных методах теории упругости некоторых образов и приемов строительной механики стержневых систем (канонические уравнения деформации и др.), разработанных Я. А. Пратусевичем [73К  [c.66]

Филин А. П. Расчет пространственных стержневых конструкций типа систем перекрестных связей и его применение к оболочкам при использовании электронных вычислительных машин. Сб. трудов ЛИИЖТ, вып. 190, Л., 1962.  [c.197]

Начало возможных перемещений Лагранжа. Применительно к твердым телам начало возможных перемещений сформулировано Лаграюкем в его Аналитической механике (1788 г.). К упругим телам (стержневой системе) этот принцип впервые был применен Пуассоном в 1833 г. Подобно тому, как для твердых тел начало возможных перемещений позволяет получить уравнения равновесия твердого тела, так и для упругих тел начало возмояшых перемещений MOJiieT заменить уравнения равновесия тела.  [c.45]

Эффективно применение металлических покрытий также для арматуры, используемой для строительных к онструкций. Так, применение упрочненной арматуры с повышенной коррозионной стойкостью экономит более 35 р. на 1 т, а оцинкованная арматурная сталь в виде высокопрочной проволоки, сварных и тканевых сеток или стержневая алюмини-рованная 20—45 р. на 1 т арматуры.  [c.62]

При проведении опытов каждый из описанных выше гидродинамических режимов может быть предметом специального исследования, так как каждый из них имеет самостоятельное практическое применение. Тогда на протяжении всей длины опытного участка осуществляется один какой-либо ре ким, подлежащий исследованию (режим пробкового течисия, стержневого течения п др.). В это М случае в экспериментальную трубу подается подготовленная пар ожидкостная смесь необходимого состава.  [c.314]

В большинстве современных магнитных толщиномеров используется двухполюсная магнитная система с постоянными стержневыми и П-образ-ными магнитами. Простейшими приборами такого типа являются толщиномеры, в которых применение П-образ-ного магнита сочетается с использованием механической магнитоуравновешенной системы, расположенной в меж-полюсном пространстве магнита.  [c.60]

Несмотря на низкое движущее напряжение около 0,2 В, цинковые протекторы в настоящее время еще составляют около 90 % всех видов протекторов для наружной защиты морских судов [15]. В военно-морском флоте ФРГ для наружной защиты судов протекторами обязательно предписывается применять цинк [6]. Для внутренней защиты сменных танков в танкерах цинковые сплавы являются единственным материалом протекторов, допускаемым без ограничений [16] (см. также раздел 18.4). Для наружной защиты трубопроводов в морской воде применяют цинковые протекторы в виде браслетов, приваренных в продольном направлении к скобам, соединенным с трубой, или в виде насан<енных полуоболочек (см. раздел 17.2.3). В случае солоноватых или сильно соленых вод, получаемых, например, при добыче нефти или в горном деле, цинковые протекторы применяют и для внутренней защиты резервуаров (см. раздел 20). Возможности применения цинковых протекторов в пресной воде весьма ограничены. При низкой электропроводности среды стационарный потенциал и поляризация с течением времени обычно значительно повышаются. Это относится и к применению в грунте. Если не считать эпизодического применения стержневых и ленточных протекторов в качестве заземлителей, цинковые протекторы используют только при сопротивлении грунта менее 10 Ом-м. Чтобы уменьшить пассивируемость и снизить сопротивление растеканию тока, протекторы должны укладываться с обмазкой активатора — см. раздел 7.2.5.  [c.182]

Для подавляющего б0льш1шст15а встречающихся на практике систем молено применять принцип Сен-Венана. Так, ва основе применения этого принципа построен расчет стержневых и рамных систем. На основе этого принципа устанавливаются статически эквивалентные условия на контуре пластин или оболочек. Имеются II другие наглядные примеры его эффективности. В данном случае, однако, интереснее рассмотреть не столько правила, сколько всключения.  [c.60]

Обсуждение статической неопределимости закона распределения напряжений по поперечному сечению стержня показало, что при наличии в стержне отверстий, выточек и тому подобных нерегулярностей формы возникает резкая неравномерность распределения напряжений со значительными пиками вблизи указанных нерегулярностей. Это явление носит па. атптконцгнтрации напряжений. Оно обнаруживается не только при осевой, но и при всех других видах деформации стержня, а-также при деформации элементов любой формы (не только стержневых). С этим явлением приходится считаться как при конструировании элементов конструкций и деталей машин, так и при расчете их. Выявить распределение напряжений с учетом их концентрации можно двумя путями теоретическим и экспериментальным. Теоретический путь основан на применении теории сплошных сред (теории упругости, теории пластичности, теории ползучести — в зависимости от свойств материала), в которой вместо гипотез геометрического характера используются дифференциальные уравнения совместности деформаций, а равновесие соблюдается для любого бесконечного малого элемента тела, а не в интегральном (по поперечному сечению) смысле, как это делается в сопротивлении материалов.  [c.99]

В последние годы в СССР разработан принципиально новый способ про изводства форм и стержней. С начала развития литейного производства литейные формы и стержни производились путем уплотнения встряхиванием или прессованием пластичных формовочных смесей. Разработанный к Ц11И-ИТМАШе под руководством А. М. Лясса и П. А. Барсука при участии работников ХПИ и завода Стапколит и др., новый способ основан на применении самотвердеющих жидкотекучих смесей [118]. Разработанные новые смеси вместо уплотнения просто заливаются в стержневые ящики и в опоки на модели. В зависимости от состава смеси, будучи залиты в ящики и формы, они затвердевают в короткий, заранее заданный срок. Применение нового процесса коренным образом меняет всю технологию этой части литейного производства, значительно упрощает и удешевляет его. ЦНИИТМАШем разработаны новые типовые механизированные и автоматизированные линии для применения нового способа в массовом производстве и установки для применения его в индивидуальном или мелкосерийном производстве. Лицензии на этот новый технологический процесс проданы Франции, Италии, Швеции, Дании, Норвегии и другим странам. Авторы этой работы были удостоены Ленинской премии.  [c.101]

Л. В. Ассур. Апалоги ускорений и их применение к динамическому расчету плоских стержневых систем.— Известия СПб Политехнического института, 1908, т. 9, вып. 2, стр. 736.  [c.44]


Смотреть страницы где упоминается термин Стержневые Применение : [c.4]    [c.192]    [c.194]    [c.315]    [c.37]   
Машиностроение Энциклопедический справочник Раздел 4 Том 8 (1949) -- [ c.118 ]



ПОИСК



412, 413 стержневые

Г лава 6 Основные выводы практического применения алгоритма МГЭ в задачах статики, динамики и устойчивости стержневых систем

Основные выводы практического применения алгоритма МГЭ в задачах статики, динамики и устойчивости стержневых систем

Применение к плоским стержневым системам

Применение методов теории установившейся ползучести к решению задач Упругопластическое состояние стержней и стержневых систем с учетом деформаций ползучести

Применение приближенных методов к расчету на устойчивость стержней и стержневых систем

Применение пространственных стержневых механизмов в машинах и приборах

Совместное применение AutoAD и МКЭ ANSYS для расчета стержневой рамы



© 2025 Mash-xxl.info Реклама на сайте