Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическое поле температурное

В ХОЛОДНОМ конце проводника, вызывает градиент электрического потенциала. Отрицательный заряд на холодном конце нарастает до момента достижения динамического равновесия между числом электронов с большей энергией, диффундирующих от горячего конца к холодному под действием градиента температуры, и числом электронов, перемещающихся от холодного конца к горячему под действием градиента потенциала электрического поля. Этот градиент потенциала существует, пока есть градиент температуры, и называется термоэлектрической э.д.с. Отсюда следует, что термо-э.д.с. не может возникнуть без температурного градиента.  [c.268]


Современная теория переноса электронов в проводниках дает возможность получить выражение для абсолютной термо-э. д. с. S. При этом предполагается, что температурный градиент, возникающий в образце металла во время опыта, и действующее на пего электрическое поле вызывают пренебрежимо малое возмущение колебаний решетки. Выражение для. 5 имеет вид )  [c.213]

Важнейшей эмиссионной характеристикой твердых тел является работа выхода еср (е — заряд электрона, Ф — потенциал), равная минимальной энергии, которая необходима для перемещения электрона с поверхности Ферми в теле в вакуум, в точку пространства, где напряженность электрического поля практически равна нулю [1]. Если отсчитывать потенциал от уровня, соответствующего покоящемуся электрону в вакууме, то ф— потенциал внутри кристалла, отвечающий уровню Ферми. Согласно современным представлениям в поверхностный потенциальный барьер, при преодолении которого и совершается работа выхода, основной вклад вносят обменные и корреляционные эффекты, а также — в меньшей степени — электрический двойной слой у поверхности тела. Наиболее распространенные методы экспериментального определения работы выхода — эмиссионные по температурной, спектральной или полевой зависимости соответственно термо- фото- или полевой эмиссии, а также по измерению контактной разности потенциалов между исследуемым телом и другим телом (анодом), работа выхода которого известна [I, 2]. В табл. 25.1, 25.3 и 25.4 приведены значения работы выхода простых веществ и некоторых соединений. Внешнее электрическое поле уменьшает работу выхода (эффект Шоттки). Если поверхность эмиттера однородна, то уменьшение работы выхода. эВ, при наложении электрического поля напряженностью В/см, равно  [c.567]

Температурные характеристики релаксационной поляризации. Изменение температуры оказывает существенное влияние на параметры диэлектрика, находящегося в электрическом поле. В этом влиянии можно выделить три направления [7]  [c.152]

В большинстве случаев при интенсивной ионной поляризации диэлектрики имеют положительный температурный коэффициент диэлектрической проницаемости. Эта закономерность объясняется тем, что при повышении температуры ослабляются упругие силы связи между ионами в узлах кристаллической решетки, что облегчает смещение ионов в электрическом поле.  [c.32]


Резкий рост диэлектрической проницаемости с ростом температуры происходит, когда вязкость жидкости достаточно снижается, что облегчает ориентацию дипольных молекул электрическим полем. Из кривых рис. 2-2 видно, что диэлектрическая проницаемость полярного диэлектрика зависит и от частоты. При больших частотах температурный максимум диэлектрической проницаемости сдвигается в область более высокой температуры, причем максимум снижается.  [c.34]

И потерь от дипольной поляризации, В зависимости от конкретных условий может преобладать та или иная составляющая. Это положение иллюстрирует график зависимости tg б совола от температуры, представленный на рис. 2-14. При невысоких температурах преобладают дипольные потери потери от токов утечки очень малы. При отрицательных температурах вследствие высокой вязкости совола, малой тепловой подвижности его молекул ориентация их электрическим полем затруднена. Молекулы находятся как бы в заторможенном состоянии. При повышении температуры вязкость падает, подвижность молекул возрастает и облегчается ориентация их электрическим полем, что приводит к увеличению интенсивности дипольной поляризации и к росту tg б. Температурный максимум приходится на некоторые оптимальные условия подвижность молекул  [c.54]

Ориентация молекул происходит без трения, то диэлектрические потери будут также малы. Лишь при средних значениях вязкости, когда поворот и ориентация диполей становятся возможными, но совершаются с преодолением трения молекул и нагревом материала, диэлектрические потери могут быть значительны и достигают максимальной величины. Прн увеличении частоты этот температурный максимум сдвигается вправо, в сторону более высоких температур, снижаясь по своему значению. В частотной зависимости полярные диэлектрики также имеют максимум tg б от частоты, определяемый временем релаксации при поляризации дипольных молекул в переменном электрическом поле возрастающей частоты.  [c.25]

В температурной зависимости тангенса угла релаксационных диэлектрических потерь наблюдается максимум при некоторой температуре, характерной для данного вещества. При этой температуре время релаксации частиц диэлектрика примерно совпадает с периодом изменения приложенного переменного электрического поля. Если температура такова, что время релаксации частиц значительно больше полупериода изменения приложенного переменного напряжения,  [c.48]

Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усилений колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона X, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 7-2). Иными словами, температурный коэффициент (см. стр. 39) удельного сопротивления металлов (кельвин в минус первой степени)  [c.192]

Явление диффузии ионов, образующих металл или сплав, под действием электрического поля известно уже давно [8]. Однако лишь в последнее время этот процесс начали рассматривать как метод изучения электронного строения металлических твердых тел. Это стало возможным после того, как была создана теория явления [1, 6]. Различные авторы проводили разработки в этом направлении [4, 5], однако предложенные ими методы обладают рядом недостатков. Избежать последних позволяет исследование температурной зависимости рассматриваемого явления диффузии электропереноса.  [c.201]

ЭЛЕКТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В УЗЛАХ СТАНКОВ высокой ТОЧНОСТИ  [c.415]


При электрическом моделировании температурных полей узел станка приводится к плоской системе путем раскроя корпусной детали и разворачивания ее на плоскость.  [c.417]

Материалы из ЦТС указанных составов характеризуются высокими значениями пьезомодулей и коэффициентов электромеханической связи малыми диэлектрическими потерями в рабочих электрических полях. Наряду с этим они имеют хорошую температурную и временную стабильность.  [c.318]

Тангенс угла диэлектрических потерь в электрических полях большой напряженности измерялся методом моста ио специальной блок-схеме. Соблюдение температурных режимов в указанных графиком интервалах производилось на специальном оборудовании.  [c.323]

Метод электрического моделирования (электрической аналогии) основан на той закономерности, что одними и теми же дифференциальными уравнениями описываются как электрические поля, так и поля совершенно другой физической природы — гидродинамические, электростатические, магнитные, температурные и т. д. В частности, стационарное температурное поле, так же как и стационарное электрическое поле, характеризуется уравнением Лапласа нестационарные поля (и температурные, и электрические) описываются уравнением типа уравнения Фурье и т. д.  [c.14]

Первоначальные сведения о распределении температуры в проставках, хвостовиках рабочих лопаток и периферийной части бочки ротора получены электрическим моделированием температурного поля единичной ступени на электролитических моделях лопатки с проставкой и бочки ротора. На моделях воспроизводилось пространственное температурное поле. Основные результаты исследования эффективности охлаждения ротора на модели единичной ступени приведены в работах [27, 28], где показано, что с достаточной точностью температура периферийной части бочки ротора в пределах ступени может быть определена на упрощенной модели полу-ограниченного тела с равномерно распределенными (соответственно шагу лопаток) охлаждающими каналами. Заглубление каналов при этом должно соответствовать расстоянию от корневого сечения лопаток до оси каналов в лопатках, а к полуограниченного тела должен быть равен X материала лопатки.  [c.183]

Единственной векторной величиной, вполне определенной в нашей задаче, является вектор напряженности электрического поля (в отличие от задач, например, тепловой конвекции, где важную роль играют два вектора ускорение силы тяжести и градиент температуры). Поэтому в нашем случае смена различных режимов вряд ли будет постепенной и плавной. Наоборот, здесь нужно ожидать резких пороговых эффектов (гидродинамических кризисов), подобных тем, которые известны для тепловой конвекции при строго вертикальном температурном градиенте (снизу теплее).  [c.280]

ЭЛЕКТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ  [c.411]

Электрическому моделированию температурных полей при сварке посвящена, насколько нам известно, только работа [4], где на сетках Я — С решено несколько задач по сварке и наплавке.  [c.412]

Общие сведения. Электрические свойства — совокупность свойств, характеризующих способность веществ и материалов проводить электрический ток в электрическом поле. К электрическим свойствам, наиболее широко используемым для исследования материалов (особенно металлических) и оценки возможности их практического применения, в первую очередь относится удельная электропроводность (у) и обратная ей величина — удельное электрическое сопротивление (р), а также температурный коэффициент удельного электросопротивления (ар ).  [c.90]

Коагуляция — укрупнение (слипание) частиц при их столкновении в процессах броуновского движения, перемешивания или диффузии в силовом (например, температурном или электрическом) поле.  [c.135]

Полупроводниками называют вещества, удельное сопротивление которых при нормальной температуре находится между значениями удельных сопротивлений проводников и диэлектриков (в диапазоне от до 10 °...10 Омом). Основным свойством полупроводника является зависимость его электропроводности от воздействия температуры, электрического поля, излучения и других факторов. Полупроводники в отличие от проводников имеют отрицательный коэффициент температурного удельного сопротивления, электропроводность полупроводников с увеличением температуры растет экспоненциально.  [c.334]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]


Сегиетоэлектриками называют диэлектрики, обладающие в определенном температурном диапазоне спонтанной поляризацией. К своеобразным свойствам сегнето-электриков относятся высокое и сверхвысокое значение бг резкая зависимость е, от температуры с острыми пиками в точке Кюри резкая зависимость вг от напряженности электрического поля. Эти свойства используются в устройствах на основе сегнетокерамическпх материалов. На рис, 23.8 приведена зависимость е., титаната бария от температуры, откуда видно, что при 125 °С у этого материала существует точка Кюри. На рис, 23.9 для этого же материала показана зависимость е, от напряженности  [c.557]

Для веществ, в которых носители магнитного момента взаимодействуют между собой и с внутрикристал-лическим полем, температурная зависимость магнитной восприимчивости парамагнетиков следует закону Кюри — Вейсса xv = j(T — 0), где постоянная С во многих случаях практически совпадает с постоянной С в законе Кюри для свободных магнитных ионов данного вида постоянная 0 характеризует взаимодействие магнитных ионов между собой и с внутрикристаллическим полем. Закон Кюри — Вейсса выполняется обычно в определенной области температур. При низких температурах (ниже Г 70 К) наблюдаются отклонения от него, вызванные влиянием неоднородных электрических полей соседних ионов или ориентированных диполей молекул растворителя на орбитальный момент электронов. Закон Кюри — Вейсса выполняется также для ферро- и антиферромагнетиков в некотором интервале температур выше температуры магнитного упорядочения.  [c.593]

Исследования взаимодействия упругих и температурных полей явились началом углубленного изучения и других сопряженных физических процессов и в первую очередь таких, как электроупругость и магнитоупругость. Интерес к сопряженным электроупругим процессам в сплошных средах связан с широким применением в различных областях техники устройств, работа которых основана на использовании явления пьезоэффекта. Открытый братьями Кюри пьезоэлектрический эффект состоит в том, что при деформировании некоторых анизотропных кристаллов на их поверхности появляются электрические заряды. Имеет место также и обратный пьезоэффект, который состоит в возникновении внутренних напряжений при действии электрического поля. Данное явление существенно связано с симметрией  [c.235]

П. П. Кобеко и Г. П. Михайлов установили, что у высокомолекулярных органических соединений (полимеров), состоящих из звеньев с большим дипольным моментом, обычно наблюдаются два температурных максимума tg б один в области низких температур, другой в области высоких температур при низких температурах вследствие повышения вязкости твердого тела (достижения большой жесткости структуры) ориентироваться электрическим полем могут только непосредственно те группы атомов (радикалы), которые обладают дипольным моментом в это вращательное движение не вовлекаются соседние атомы. Максимум в области низких температур получил название дипольно-радикального. При повышенных температурах вследствие уменьшения вязкости твердого тела наблюдаются повороты  [c.56]

В ходе тепловой ионной поляризации твердых диэлектриков переброс слабосвязанных ионов в электрическом поле происходит с потерями энергии. В некоторых диэлектриках с неплотной упаковкой объема частицами, например стеклах, где имеет место ионно-релаксационная поляризация, также наблюдаются закономерности изменения tg6 от температуры и частоты, характерные для дипольной поляризации. На рис. 5.24 приведены температурные и частотные зависимости для алюмоцннкосиликатного стекла — ситалла на основе оксидов SiOj, А1 0з и ZnO. Существование или отсутствие максимумов tg 6 в температурной и частотной зависимостях (рис. 5.24) зависит от условий термообработки стекла.  [c.164]

Этот вид поляризации наблюдается у всех полярных веществ, но с той только разницей, что у газов температурная зависимость г незначительна ввиду малой плотности, а у твердых диэлектриков поляризация обусловлена уже не поворотом самой молекулы, а поворотом имеющихся в ней полярных радикалов. Величина дипольно-релакса-ционной поляризации зависит от частоты электрического поля, уменьшаясь с частотой и асимптотически приближаясь к величине электронной поляризации.  [c.8]

Сегнетоэлектрики — вещества, обладающие в некотором температурном интервале спонтанной поляризацией в отсутствии внешнего электрического поля. Но так как сегнетоэлектрический кристалл (рис. 1.2) состоит из больпюго количества областей (доменов) с раз- личными направлениями ориентации их спонтанных электрических моментов, геометрическая сумма которых равна нулю, то на опыте можно наблюдать изменения такого момента с температурой.  [c.13]

В веществах с самопроизвольной поляризацией имеются от- ,ельные области (домены), обладающие электрическим моментом F отсутствие внешнего поля. Однако при этом ориентация электрических моментов в разных доменах различна. Наложение внешнего голя способствует преимущественной ориентации электрических юментов доменов в направлении поля, что дает эффект очень сильной поляризации. В отличие от других видов поляризации при некотором значении напряженности внешнего поля наступает насыщение, и дальнейшее усиление поля уже не вызывает возрастания tHT H HBHO TH поляризации. Поэтому диэлектрическая проиицае-люсть при спонтанной поляризации зависит от напряженности электрического поля. В температурной зависимости е,. наблюдается один или несколько максимумов. В переменных электрических полях материалы с самопроизвольной поляризацией характеризуются значительным рассеянием энергии, т. е. выделением теплоты.  [c.21]

Дипольные молекулы, следуя за изменнением электрического поля, поворачиваются в вязкой среде и вызывают потери электрической энергии на трение с выделением теплоты. Если вязкость жидкости достаточно велика, молекулы не успевают следовать за изменением поля и дипольная поляризация практически исчезает д электрические потери при этом будут малы. Дипольные потери б>дут также малы, если вязкость жидкости мала и ориентация молекул происходит без трения. При средней вязкости дипольные потери могут быть существенны и при некотором значении вязкости и еют максимум. Температурная зависимость tg 6 (рис. 3-4) мас-  [c.51]

В заключение можно назвать основные направления развития пластометрических исследований на ближайшие годы 1) создание новых универсальных многоцелевых пластометров блочного типа, максимально близко моделирующих условия деформации различных процессов ОМД по температурно-скорост-ным условиям, законам развития деформации во времени и схемам напряженного состояния 2) разработка реологических моделей управления качеством металлопродукции для различных процессов ОМД на основе физических моделей течения металла в результате пластометрических исследований 3) соединение пластометрии с металлографией для анализа и контроля изменения структуры металла в процессе горячей деформации 4) проведение пластометрических исследований в особых условиях (вакуум, ультразвуковые, электрические поля и т. д.) 5) автоматизация пластометрических исследований при обработке опытных данных и управлении экспериментом создание автоматизированных комплексов типа пластометр — ЭВМ — графопостроитель или пластометр — УВМ — полупромышленное оборудование (прокатный стан, пресс, молот) 6) накопление, систематизация и формализация результатов пластометрических исследований с целью разработки подпрограмм Реология металлов в система- АСУ ТП и комплексных математических моделях различных процессов ОМД.  [c.68]


При определении диэлектрических свойств возможны погрешности, так как толщина пленки обычно определяется по весу. В случае тонких пленок из титаната бария напряженность электрического поля очень легко повышается и этим фактором не следует пренебрегать. Если это явление будет иметь место при очень низком напряжении, то возникнут серьезные затруднения при эксплуатации пленок титаната бария. Твердые растворы ВаТЮз—В12 (5пОз)з мало меняют свои характеристики от напряженности поля, е имеет величину около 4000, температурные характеристики также удовлетворительны, что позволяет использовать эти свойства в конденсаторах.  [c.297]

Электрохимический способ полирования (или точнее глянцовки) металлов может осуществляться лишь тогда, когда не имеет места полная поляризация, но и не наступает процесс анодного травления. Состав электролита и режим обработки (электрический, температурный и по времени) должны обеспечивать разрыв поляризационной плёнки только на гребешках поверхности (где силовые линии электрического поля всегда более концентрированы) и не нарушать её в углублениях. а так как снимаемые гребешки имеют высоту два-три десятка микронов, то, очевидно, что предъявляемые требования к режиму и электролиту должны быть весьма жёсткими и различными для различных материалов (см. табл. 71). Для обеспечения наибольшей концентрации электрического поля на гребешках обрабатываемой поверхности необходимо уменьшать рассеивающую способность ванны увеличением размера катода (в некоторых случаях площадь его в 15—20 раз больше площади анода). Применяемые электролиты должны быть сильно концентрированными, чтобы не допустить химического травления обрабатываемых поверхностей.  [c.60]

Наиболее точным и производительным методом контроля микрогерметичности наряду с методом температурного прогиба является метод масс-спектрометра. Для проверки по этому методу применяют специальные гелиевые течеискатели, принцип действия которых основан на их способности выделять гелий из общей смеси поступающих в них паров и газов. Эта способность определяется свойствами заряженных частиц (ионов), ускоренных электрическим полем, разделяться в магнитном поле по массам. Проверяемый чувствительный элемент обдувается гелием, частицы которого в случае негерме-тичности элемента попадают в вакуумную систему течеискателя и камеру масс-спектрометра. Этот метод позволяет очень быстро установить место течи.  [c.805]

Конфигурация температурного поля в движущейся среде существенным образом зависит от конфигурации поля скоростей. С другой стороны, температурное поле вызывает нарушение однородности среды. Плотность среды в областях с более высокой температурой уменьшается, и возникает неустойчивое распределение плотностей (оно устойчиво только в случае равномерного верхнего подогрева при отсутствии возможности возникновения циркуляции по боковым поверхностям или краям греющей пластины), В связи с этим различают вынужденную конвекцию — когда движение среды обусловливается внешним механическим или другим воздействием (насос, электрическое поле и т. п.)—и свободную конвекци ю— когда движение среды обусловлено собственно процессом теплообмена.  [c.84]

Интересен пример молекулярного переключателя, содержащего молекулы ротаксана (см. рис. 4.20, а). Эти молекулы под влиянием внешних воздействий (например, света, магнитных, электрических и температурных полей) могут обратимо менять свое положение относительно друг друга.  [c.168]

Переход на самоорганизующиеся технологии открыл реальную перспективу резкого повышения качества сварных швов и снижения энергоемкости процесса сварки плавлением [574, 575 и др.]. В настоящее время как альтернатива электронно-лучевой сварки металлов больших толщин (но на воздухе, без вакуумной камеры) разработана дуговая сварка неподвижным плавящимся электродом. В этом случае между свариваемыми пластинами плотно устанавливают металлический изолированный электрод толщиной 1—3 мм, а между кромкой электрода и основным металлом возбуждают дугу, которая самораспространяется в узком зазоре со скоростью до 5 м/с, отбрасывая расплавленный металл в зазор и заполняя его. Автоколебательное движение дуги по торцу электрода осуществляется за счет взаимной нелййейной связи электрического и температурного полей в плавящемся электроде. Разработанная технология позволяет сваривать за один проход сталь толщиной 20—100 мм со скоростью 10—40 м/ч. Если оценивать производительность данной техноло- гии при формировании сварного шва (глубиной 100 мм) с помощью произведения глубины шва на скорость сварки, то, как установлено в  [c.361]


Смотреть страницы где упоминается термин Электрическое поле температурное : [c.153]    [c.132]    [c.72]    [c.243]    [c.174]    [c.266]    [c.52]    [c.376]    [c.441]   
Справочник машиностроителя Том 2 (1955) -- [ c.115 ]



ПОИСК



Коздоба, В. И. Махненко. Электрическое моделирование температурных полей при сварке и наплавке деталей различной формы

Поля температурные

Температурное поле

Электрическое поле



© 2025 Mash-xxl.info Реклама на сайте