Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие между моментами

L", сильнее взаимодействия между моментами и и между  [c.194]

Нормальная L, 5]-связь представляет собой предельный случай, когда энергией взаимодействия между моментами p и р . одного и того же электрона можно пренебречь. Рассмотрим другой предельный случай, когда, наоборот, энергия взаимодействия между моментами p и р . одного электрона велика по сравнению с другими видами взаимодействий. В этом случае для каждого из электронов моменты р . и р , самостоятельно складываются в результирующий момент р .  [c.212]


Взаимодействие между моментами. Начальный вывод взаимодействия, которое мы желаем получить, относился непосредственно к случаю ядерных моментов [8]. Но он основывался на выражении, имеющем форму (5.46), поэтому результаты оказываются совершенно аналогичными.  [c.548]

Основное различие между этими МД состоит в способах описания взаимодействий между объектами н атрибутами. Взаимосвязь выражает отношение между множествами данных. Используют взаимосвязи один к другому , один ко многим и многие ко многим , Один к одному — это взаимно однозначное соответствие, которое устанавливается между одним объектом и одним атрибутом. Например, в определенный момент времени в одной ЭВМ используется один определенный процессор. Номеру выбранной ЭВМ соответствует номер выбранного процессора. Один ко многим — это соответствие между одним объектом и многими атрибутами. Многие ко многим — это соответствие между многими объектами и многими атрибутами. Например, на множество ЭВМ может одновременно работать множество пользователей. Взаимосвязи между объектами и атрибутами удобно представлять в виде графов и гиперграфов.  [c.105]

На рис. 4.3 представлены силы, действующие на балки. Величину силы взаимодействия между балками IM и EF (или GH) в J (или L) можно записать как рР. Изгибающие моменты балки 1М в точках J а К имеют вид  [c.44]

Решение. Силы взаимодействия между двигателем и валом винта неизвестны, но они станут внутренними, если рассмотреть в качестве механической системы вертолет вместе с винтами. Остановку винта вызвали тоже внутренние силы, которые не могут изменить кинетический момент Кг системы, равный до этого (когда оба винта вращались в разные стороны) нулю. Следовательно, и после остановки винта должно быть A =. /i( Oi+o),2)-(-/2O)2=0> где /[( oi+ o-j) — кинетический момент вращающегося винта (винт, вращаясь еще и вместе с вертолетом, будет иметь абсолютную угловую скорость (i)afi=Wi+W2), а — кинетический момент вертолета вместе с остановившимся винтом. В результате находим  [c.296]

Под действием постоянного момента ЯК в поперечных сечениях вала возникают неизменные во времени касательные напряжения т. Одновременно с кручением будет происходить изгиб вала под действием силы Р—силы взаимодействия между шестернями (рис. 483).  [c.411]

Внутренними называются силы взаимодействия между материальными точками, входящими в состав рассматриваемой системы. В соответствии с принципом равенства действия и противодействия, внутренние силы существуют попарно. При этом главный вектор V и главный момент т[ внутренних сил системы равны нулю, т. е.  [c.141]


Силы взаимодействия между отдельными частями сплошной среды являются внутренними. В сплошных средах эти силы подчиняются третьему закону Ньютона и благодаря этому внутри выделенного объема V главный вектор и главный момент этих сил взаимодействия равны нулю. Однако на поверхности ст выделенного объема эти силы останутся и будут характеризовать воздействие на выделенный объем других частей сплошной среды. Такие силы называют поверхностными. Они зависят от ориентации площадки, к которым приложены. Поверхностную силу, действующую на единицу площадки, ориентация которой задана в пространстве нормалью п, обозначим Рп.  [c.234]

В третьем законе Ньютона предполагается, что обе силы равны по модулю в любой момент времени независимо от движения точек. Это утверждение соответствует ньютоновскому представлению о мгновенном распространении взаимодействий — предположению, которое носит название принципа дальнодействия ньютоновской механики. Согласно этому принципу, взаимодействие между телами распространяется в пространстве с бесконечно большой скоростью. Иначе говоря, если изменить положение (состояние) одного тела, то сразу же можно обнаружить хотя бы очень слабое изменение во взаимодействующих с ним телах, как бы далеко они ни находились.  [c.42]

Переходя к доказательству, отметим прежде всего, что внутренние диссипативные силы в данной системе будут встречаться попарно, причем в каждой паре, согласно третьему закону Ньютона, они одинаковы по модулю и противоположны по направлению. Найдем элементарную работу произвольной пары диссипативных сил взаимодействия между телами 1 и 2 в системе отсчета, где скорости этих тел в данный момент равны Vi и V2  [c.107]

Покажем, что суммарный момент всех внутренних сил относительно любой точки равен нулю. Действительно, внутренние силы — это силы взаимодействия между частицами данной системы. По третьему закону Ньютона, эти силы попарно одинаковы по модулю, противоположны по направлению и лежат на одной прямой, т. е. имеют одинаковое плечо. Поэтому моменты сил каждой пары взаимодействия равны по модулю и противоположны по направлению, т. е. уравновешивают друг друга, и, значит, суммарный момент всех внутренних сил всегда равен нулю.  [c.139]

Масса орбитальной космической станции 19 т, масса космонавта в скафандре 100 кг. Оцените силу гравитационного взаимодействия между станцией и космонавтом на расстоянии 100 м. За какое приблизительно время под действием этой силы космонавт приблизится к станции на расстояние 1 м, если в начальный момент времени относительная скорость станции и космонавта была равна нулю  [c.67]

Пример. Момент вращения внутренних сил. В результате взаимодействия между самими частицами возникают моменты внутренних сил. Покажем, что сумма всех моментов внутренних сил равна нулю. Полный момент вращения всех сил равен  [c.192]

МэВ пролетает мимо протона на таком расстоянии, что момент импульса нейтрона относительно протона равен около 10 эрг-с. Чему равно самое близкое расстояние, на котором нейтрон пролетает мимо протона (Энергией взаимодействия между обеими частицами можно пренебречь.) Ответ. 4  [c.202]

D/e2)exp(I0- ) 10- °, т. е. оно ничтожно мало. Для сил взаимодействия между двумя электронами закон Кулона точно-выполняется вплоть до самых малых известных нам расстояний между электронами. Однако электроны, помимо заряда, имеют магнитный момент, а сила взаимодействия магнитных моментов  [c.268]

Позволим себе напомнить, что концентрация дислокаций является параметром, управляющим поведением металлических материалов под нагрузкой. Пластическая деформация начинается в тот момент, когда дислокаций становится настолько много, что расстояние между ними снижается до критического значения, ниже которого они начинают активно взаимодействовать между собой. Так начинают проявляться коллективные эффекты.  [c.108]

С другой стороны, наступление момента конкуренции процессов Z)iA 4-сборки можно интерпретировать как приближение в системе к порогу перколяции в отношении напряженности и взаимодействия локальных силовых полей от сформированных фрактальных кластеров. Достижение же критического значения концентрации фрактальных кластеров конденсированной фазы обусловливает перколяционную структуру электрических взаимодействий между ними. Для систем, погруженных в пространство с евклидовой размерностью Е=Ъ фрактальная размерность частиц, соответствующая порогу перколяции, Df 2,5 [35]. В условиях стационарного воздействия на систему отрицательного температурного градиента (охлаждения системы внешней средой) описанное состояние системы катализирует таким образом дальнейший процесс агрегации по ССЛ-механизму. Подобным образом развивается волнообразный цикличный характер дальнейшей цепочки фазовых переходов второго рода (рис. 3.13), обусловливающий наиболее эффективный путь диссипации энергии посредством структурообразования по иерархическому принципу в открытой неравновесной системе охлаждаемого расплава.  [c.135]


Предположение о бесконечно большой скорости распространения в механике Ньютона относится не только к сигналам, с помощью которых происходит регистрация событий во времени, но и к передаче силовых взаимодействий между телами эти взаимодействия считаются происходящими мгновенно, беч запаздываний. В соответствии с этим силы в механике Ньютона зависят от расстояний между точками (телами) и от их относительных скоростей, причем вектор-радиусы взаимодействующих тел берутся в один и тот же момент времени.  [c.445]

Теория показывает, что облако имеет отличный от нуля момент количества движения. Подробнее о свойствах я-мезонов и их роли в передаче ядерного взаимодействия между нуклонами см. 76 и 79, п. 5.  [c.82]

Таким образом, имеются все необходимые предпосылки для построения оболочечной модели ядра в поле сферического потенциала движутся не взаимодействующие между собой частицы — нейтроны и протоны, которые имеют полуцелый спин и подчиняются принципу Паули. Потенциал в первом приближении одинаков для нейтронов и протонов, так как кулоновское отталкивание для протонов становится заметным только у тяжелых ядер. Это заключение подтверждается совпадением магических чисел для протонов и нейтронов. Благодаря сферической симметрии потенциала орбитальный момент количества движения / является интегралом движения, причем всем 21 -f 1 ориентациям  [c.191]

Электромагнитное взаимодействие нейтрона с электроном определяется величиной взаимодействия между их магнитными моментами. Но последнее настолько мало, что его энергия достигает потенциала ионизации атома (- 10 эв) лишь на расстояниях порядка 10 см. Таким образом, сечение ионизационного торможения нейтрона оказывается равным см , т. е. при-  [c.239]

Одной из центральных задач ядерной физики является выяснение природы ядерных сил. Ядерные силы невозможно отнести ни к одному из других известных видов сил. Они не могут быть силами электромагнитного происхождения электрическими потому, что проявляются не только между заряженными, но и между нейтральными частицами (например, между нейтроном и протоном в дейтоне) магнитными потому, что чисто магнитное взаимодействие между магнитными моментами нуклонов слишком мало. Силы, ответственные за р-распад, и гравитационные силы, также не могут быть причиной ядерно-го взаимодействия, так как и те и другие чрезвычайно слабы. Кроме того, силы тяготения являются дальнодействующими.  [c.7]

Следуя Ланжевену, рассмотрим среду, содержащую Анатомов в единичном объеме. Пусть каждый атом имеет постоянный магнитный момент М и взаимодействие между магнитными моментами атомов отсутствует. В отсутствие магнитного поля эти моменты ориентированы случайным образом, так что результирующая намагниченность равна нулю. При наложении магнитного поля эти моменты ориентируются в направлении поля. В результате этого появляется направленная по полЛ намагниченность. Ориентирующему действию поля препятствует тепловое движение.  [c.325]

Френкель и Гейзенберг показали, что при наличии сильного электростатического взаимодействия между электронами энергетически выгодным может оказаться состояние с параллельной ориентацией спинов, т. е. намагниченное состояние. Детальные квантово-механические расчеты электрического взаимодействия двух электронов с учетом их спинового момента приводят к следующему выводу. Результирующая энергия взаимодействия наряду с чисто классическим кулоновским членом содержит еще добавочный специфический квантовый член, зависящий от взаимной ориентации спинов. Эта добавочная энергия получила название обменной. В простейшем случае взаимодействия двух электронов ее  [c.336]

Отметим, что локализованные магнитные моменты могут быть связаны не только с магнитными атомами. Так, А. Ф. Хохлов и П. В. Павлов наблюдали возникновение ферромагнитного упорядочения в аморфном кремнии. Здесь нет атомов с недостроенными внутренними оболочками, однако имеются оборванные ковалентные связи. На каждой такой связи локализован неспаренный электрон. В обычных условиях концентрация оборванных связей в аморфном кремнии невелика ( --10 —lO s см- ), поэтому взаимодействия между локализованными на связях магнитными моментами нет. Такое вещество представляет собой парамагнетик. Однако при высокой плотности оборванных связей, которую можно создать, облучая аморфный кремний ускоренными ионами инертных газов, возникает обменное взаимодействие, приводящее к ферромагнетизму.  [c.340]

Рассмотрим более подробно нагрузки, действующие на стержень при его медленном движении в канале. Одна из особенностей задач статики стержней, находящихся в жестком канале, заключается в том, что силы взаимодействия между стержнем и поверхностью канала qj и i,) неизвестны. Если стержень вращается и движется вдоль оси канала, то все три компоненты векторов q и 1LI, если учитывать силы трения, отличны от нуля. Если стержень только вращается, то q, Ц2 и цз равны нулю. Распределенный крутящий момент 11 зависит от сил трения. Если трение не учитывать, то ц =0. С учетом сил трения  [c.220]

Между магнитными моментами отдельных примесей имеется, конечно, прямое магнитное взаимодействие. Оно, однако, всегда очень мало. Взаимодействие между моментами возникает и вследствие электрон-электронного взаимодействия. Физически такое взаимодействие связано с тем, что электрон проводимости, рассеиваясь иа одной примеси, чувствует связанный с ней локализованный спин, и затем переносит информацию об этом спине к другой примеси и рассеивается иа ней в соответствии с ее локализованным моментом, Чтобы понять этот эффект в ббльших деталях, рассмотрим сначала взаимодействие электрона с одной примесью.  [c.546]


Уравнения (6.32), (6.33), (6.39), (6.41), (6.43) и (6.46) учитывают общее движение, силовые поля, теплообмен и распределении по размерам. Логически можно обобщить их и на случаи с массо-обменом, химическими реакциями и т. д. Л1ожно было бы добавить, что в соответствии с обобщенным понятием многофазной среды в смеси газа с твердыми частицами, состоящими из одного вещества, частицы разных размеров, форм и масс, с разными электрическими зарядами, дипольными моментами или магнитными свойствами образуют разные фазы , помимо газовой. Для несферических частиц постоянные времени F ш G можно определить экспериментально. Поскольку учитывается взаимодействие между частицами, а внутренним напряжением в частицах прене-брегается, то эти соотношения применимы для объемных концентраций частиц в псевдоожиженном слое вплоть до 90 %, но неприменимы для плотных слоев (разд. 9.7). При этом нижний предел среднего расстояния между частицами до.чжен составлять от 2 до 3 диаметров частиц при расстоянии между частицами более 10 диаметров Fp и Gp можно не учитывать и Цт Рч Р lira о, = 0.  [c.286]

Практическое значение волн сложно переоценить. Но кроме этого, Bojr-новые явления лежат в основе супгсствования физического мира. Вся материя делится на вещес тво, состоящее из элементарных частиц - электронов, протонов и нейтронов, - и поля, осуществляющие взаимодействия между частицами вещества. На данный момент различают 4 вида полей электромагнитное, гравитационное, сильное и слабое ядерные. Есть сведения о том, что электрическое и магнитное поле могут существовать независимо друг от друга и имеют различную природу.  [c.250]

Закон сохранения энергии утверждает, что для системы частиц, взаимодействие между которыми неявно ) зависит от времени, полная энергия системы постоянна (рис. 5.6—5.9). Этот результат мы считаем достоверно установленным экспериментальным фагктом. Если выражаться точнее, то этот закон говорит нам Q Том, что существует некоторая скалярная функция [такая, как функция Mv J2- -Mgx в (13)] положения и скорости частиц, которая не изменяется со временем при условии, что в течение рассматриваемого промежутка времени внешнее взаимодействие явно не изменяется. Например, элементарный заряде не должен изменяться со временем. Помимо функции энергии существуют также и другие функции, которые сохраняют постоянное значение в условиях, о которых только что было сказано. (Другие такие функции мы рассмотрим в гл. 6, в которой речь пойдет о сохранении импульса и момента импульса.) Энергия представляет собой скалярную величину, сохраняющую постоянное значение при движении. Когда мы говорим о внешнем взаимодействии, то имеем в виду, что в течение рассматриваемого  [c.153]

Формула (4. 16) для вычисления энергии взаимодействия магнитного момента ядра с магнитным полем электронов позволяет по результатам измерения абсолютной величины расстояния между линиями и рассчитать магнитный момент ядра j,. Однако эти расчеты требуют знания величины а, характеризующей магнитное поле электронов данного атома в месте расположения яд ра. Вычисление а может быть сделано достаточно точно только для наиболее простых атомных систем (водород, водородподоб-ные атомы, галогены, щелочноземельные элементы). Этот расчет показывает, что, порядок величины поля электронов равен 10 — 10 э. Так, например, для электронов, находящихся в нормальном состоянии, оно равно 1,3 10 э для зЫ и 2,1 10 э для 55 S.  [c.69]

Как известно, в основе объяснения периодической системы элементов Менделеева лежит специфический характер взаимодействия электронов с ядром. В атоме имеется центральное куло-новское лоле притяжения (силовой центр), в котором движутся слабо взаимодействующие между собой эле,ктроны. В первом приближении взаимодействие электронов вообще можно не учитывать и рассматривать их как собрание независимых частиц, движущихся в центральном сферически-симметричном поле с по-тенциалом, несколько отличающимся от кулоновского . Момент  [c.188]

Описанный характер взаимодействия встречается в тяжелых атомах и отличается от схемы взаимодействия электронов в легких атомах (схема Ресселя-Саундерса). Согласно схеме Ресселя-Саундерса, взаимодействие между электронами сильнее, чем спин-орбитальное взаимодействие электрона. В этом случае спины и орбитальные моменты всех электронов складываются  [c.194]

С представлением о сложном составе нуклона мы уже встречались. Отличие магнитного момента протона и нейтрона от ди-раковских значений (1 и О соответственно) интерпретировалось в 4, п. 6 как возможность для нуклона пребывать часть времени в виде сложной системы, состоящей из идеализированного (голого) нуклона и я-мезонного облака (шубы). Эта феноменологическая интерпретация получила обоснование в 76 и 79, п. 6, где для объяснения природы ядерных сил были введены виртуальные я-мезоны, испускаемые нуклонами. В этой схеме физический протон часть времени существует в виде голого протона с л°-мез0 нным облаком, а другую часть времени — в виде голого нейтрона с я+-мезонным облаком. Аналогично физический нейтрон частично существует в виде голого нейтрона с я°-мезонным облаком, а частично — в виде голого протона с я -мезонным облаком. Такая схема позволяет понять равенство численных значений и отличие по знаку аномальных частей магнитных моментов нуклонов (они определяются -временем пребывания нуклона в виде системы с заряженным я-мезонным облаком) отличие в величине масс протона и нейтрона (электро--статическое и магнитное взаимодействие между голыми нуклонами и виртуальными я-мезонами).  [c.653]

Если два таких атома находятся относительно далеко друг от друга, то они не взаимодействуют между собой (рис. 2.3). При сближении атомо в подвижный отрицательный заряд (облако) одного из атомов в какой-то момент времени может оказаться смещенным, так что центры положительных и отрицательных зарядов уже не будут совпадать, в результате возникнет мгновенный дипольный электрический момент. Такое разделение зарядов (флуктуация) может возникать из-за увеличения энергии атома, например, в результате столкновения с другой частицей. Таким 6—221 66  [c.65]


Смотреть страницы где упоминается термин Взаимодействие между моментами : [c.215]    [c.527]    [c.548]    [c.322]    [c.295]    [c.80]    [c.140]    [c.19]    [c.515]    [c.539]    [c.56]   
Теория твёрдого тела (1972) -- [ c.548 ]



ПОИСК



Взаимодействие между



© 2025 Mash-xxl.info Реклама на сайте