Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация релаксационная

Дипольная поляризация (нрк. ориентационная поляризация, релаксационная поляризация, тепловая поляризация) — электрическая поляризация, обусловленная преимущественной ориентацией электрических моментов диполей в одном направлении в диэлектрике.  [c.104]

В (8.39) входит параметр т —время, в течение которого поляризация уменьшается в е раз по сравнению с начальной величиной. Это и есть время релаксации. Оно характеризует не только скорость исчезновения поляризации после выключения поля, но и скорость возрастания Р после включения поля. Иногда тепловую поляризацию называют также релаксационной.  [c.284]


В диэлектриках с чисто электронной поляризацией (полиэтилен, полистирол, фторопласт и др.) диэлектрические потери очень малы tg6— (10- - 10 ). В этом случае tgS не зависит от температуры и частоты вплоть до 10 Гц. В диэлектриках с релаксационной поляризацией tg6 существенно изменяется с изменением Т и со. На основе анализа выражений для активного и реактивного токов, связанных с различными видами поляризации, можно получить информацию о вкладе того или иного механизма поляризации в диэлектрические потери.  [c.303]

Нелинейным диэлектрикам — сегнетоэлектрикам наряду с электронной и ионной свойственна спонтанная (самопроизвольная) поляризация, относящаяся к числу релаксационных видов. Спонтанная поляризация возникает в определенном температурном интервале, ограниченном сегнетоэлектрическими точками Кюри, под влиянием внутренних процессов самопроизвольно. При этом структура элементарной ячейки кристалла становится несимметричной, приобретая электрический момент. В пределах  [c.544]

Диэлектрическая дисперсия может носить релаксационный (е монотонно снижается с ростом ш) или резонансный характер (е с ростом частоты проходит через максимум и минимум). Релаксационная дисперсия характерна для дипольной поляризации полярных диэлектриков.  [c.109]

В соответствии с изложенной картиной поляри.зацию разделяют на упругую и релаксационную упругая — при сильной связи между частицами, релаксационная — при слабой связи. Оба типа поляризации подразделяются на несколько видов в зависимости от того, какие частицы смещаются в процессе поляризации [11].  [c.146]

Существует четыре вида упругой поляризации электронная, атомная, ионная и дипольная. В релаксационной поляризации различают дипольную, ионную и электронную разновидности и выделяют отдельно группу процессов, тесно связанных с электропроводностью и получивших название объемной поляризации.  [c.146]

К диэлектрикам с дипольной релаксационной поляризацией относятся такие полярные жидкости, как вода, нитробензол, спирт, ацетон, соляная кислота, глицерин и др. Твердые вещества с этим же видом поляризации — целлюлоза и другие материалы на основе древесины, бакелит, синтетические смолы, шелк, органическое стекло, эбонит, канифоль и канифольные компаунды.  [c.147]

В любом диэлектрике с релаксационной поляризацией всегда дополнительно существует хотя бы один вид упругой поляризации. Общая поляризация диэлектрика, представляющая собой средний электрический момент единицы объема, выражается суммой  [c.147]


Частотные характеристики релаксационной поляризации. На основе аналогии между операторным и символическим методами расчета комплексная диэлектрическая проницаемость находится из операторного выражения (9-41) путем замены величины з на мнимую частоту /со. В таком случае получаем формулу Релея  [c.148]

Рис. 9-8. Частотные характеристики (а) и годограф (б) комплексной диэлектрической проницаемости при наличии релаксационной поляризации и сквозной проводимости Рис. 9-8. <a href="/info/24888">Частотные характеристики</a> (а) и годограф (б) <a href="/info/172432">комплексной диэлектрической проницаемости</a> при наличии релаксационной поляризации и сквозной проводимости
Температурные характеристики релаксационной поляризации. Изменение температуры оказывает существенное влияние на параметры диэлектрика, находящегося в электрическом поле. В этом влиянии можно выделить три направления [7]  [c.152]

Рис. 9-9. Температурные характеристики релаксационной поляризации Рис. 9-9. Температурные характеристики релаксационной поляризации
Таким образом, идеальный диэлектрик с проводящими включениями ведет себя как диэлектрик с релаксационной поляризацией, имеющий одну частоту релаксации озо = 1/т. Частотные характеристики е р, в р и tg бер описываются формулами (9-43) — (9-47) и показаны на рис. 9-7. Видно, что они резко отличаются от частотных характеристик компонентов смеси.  [c.161]

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами. В таких материалах образуются ионы, которые в ходе тепловых колебаний перебрасываются из положений временного закрепления на расстояния, соизмеримые с расстояниями между частицами (10 м), и закрепляются в новых положениях. В электрическом поле перебросы становятся направленными. В результате в диэлектрике возникает различие в расположении центров положительного и отрицательного зарядов, т. е. появляется электрический момент. Такой процесс называют ионно-релаксационной поляризацией. С ростом температуры число ионов, перебрасываемых в новые положения, увеличивается, поэтому растут поляризованность и диэлектрическая проницаемость. На рис. 5.16 приведена зависимость е, от температуры для натриево-силикатного стекла, в структуре которого имеют место слабосвязанные ионы.  [c.156]

Линейные полярные полимеры. По сравнению с неполярными полимерами материалы этой группы обладают большими значениями диэлектрической проницаемости (е 3-1-6) и повышенными диэлектрическими потерями [tg б - (1ч-б)-10 на частоте 1 МГц . Такие свойства обусловливаются асимметричностью строения элементарных звеньев макромолекул, благодаря чему в этих материалах возникает дипольно-релаксационная поляризация. Удельное  [c.208]

Ионно-релаксационная поляризация появляется при тепловых перебросах ионов в веществе. Эта поляризация связана с преимущественным перебросом ионов в наиравлении действия внешнего электрического поля.  [c.8]

Такие ионы в тепловом движении могут перемещаться на расстояния, значительно превышающие упругие смещения. Но в отличие от электропроводности этот процесс носит локальный, а не сквозной характер. Локальные тепловые перемещения слабо связанных ионов при наличии электронного поля создают асимметрию распределения электрических зарядов в диэлектрике и, следовательно, создают электрический момент в единице объема. Диэлектрическая проницаемость зависит от частоты электрического поля и от температуры. После снятия поля ионно-релаксационная поляризация постепенно ослабевает. Поляризация этого типа имеет замедленный характер и при высоких частотах не происходит.  [c.8]


Электронно-релаксационная поляризация обусловлена ограниченным перемещением возбужденных тепловой энергией электронов. Она характерна для диэлектриков с электронной электропроводностью, например двуокись титана с примесями ионов ниобия, кальция, бария.  [c.8]

Ионные кристаллы с неплотной упаковкой частиц обладают электронной, ионной и ионно-релаксационной поляризациями, характеризуются невысоким значением диэлектрической проницаемости, но большим положительным температурным коэффициентом.  [c.12]

Неорганические диэлектрики аморфной структуры, не содержащие полярных групп. К ним относятся, прежде всего, неорганические стекла, которые характеризуются ионно-релаксационной поляризацией. Диэлектрическая проницаемость стекол значительно зависит от их химического состава и температуры в пределах е = 3,8 -ь 20.  [c.12]

Диэлектрическая проницаемость чистых кварцевых и борных стекол без примесей немного превышает квадрат коэффициента преломления стекла, так как она определяется, главным образом, электронной поляризацией. У стекол сложного состава (технических стекол) при введении щелочных или щелочно-земельных металлов структурная сетка стекла изменяется. При введении щелочного окисла в стекло вводится избыточный кислород, и уже не каждый атом кислорода связан с двумя атомами кремния. Часть атомов кислорода связана с одновалентным атомом щелочного металла. Такой атом отдает один электрон ближайшему атому кислорода и оказывается положительным ионом. Одновалентный ион имеет большую свободу перемещения и может создавать тепловую ионно-релаксационную поляризацию.  [c.13]

Накоплению объемных зарядов и разделению зарядов в проводящих включениях препятствует тепловое движение, стремящееся ослабить поляризацию, По этой причине объемную поляризацию и ее вариант — макро-структурную поляризацию гетерогенных диэлектриков следует отнести к поляризации релаксационного типа. Процесс нарастания этих видов поляризации описывается формулой (9-37) и носит апериодический характер. Скорость нарастания поляризации тем выше, чем выше электропроводность. При ионной проводимости включений постоянная времени макроструктурной поляризации составляет величину порядка 10 9—]0 с.  [c.147]

К замедленным видам относится ионно-релаксацион-пая поляризация, происходящая в неорганических стеклах и кристаллах с неплотной упаковкой ионов, и миграционная, свойственная твердым диэлектрикам при наличии макроскопических неоднородностей.  [c.544]

Наиболее часто встречающимся нидом релаксационной поляризации является дипольная поляризация, возникающая в полярных диэлектриках при слабых связях между молекулами. Молекулы полярных диэлектриков обладают собственным электрическим моментом, который не зависит от напряженности внешнего электрического поля. После включения поля наиболее вероятным направлением молекулярных дипольных моментов становится направление вектора напряженности электрического поля. Под действием флуктуаций теплового движения большинство дипольных моментов ориентируется в этом направлении. В равновесном состоянии молекулы-диполи не располагаются строго вдоль поля, так как этому мешает тепловое движение, а имеют лишь преимущественную ориентацию ВДОЛЬ ПОЛЯ.  [c.146]

У некоторых кристаллических веществ, например у щелочно-галоидных кристаллов и кристаллов, содержащих ноны титана, висмута, стронция, существует ионная релаксационная поляризация. Появление слабо связанных ионон II электронов часто обусловлено дефектами кристаллической решетки, такими, как примесные ионы, пустые узлы и межузельные ионы, дислокации. В аморфных телах слабо связанные ионы возникают из-за так называемой неплотной упаковки частиц. Такие ионы существуют в стеклах.  [c.147]

Помимо рассмотренных видов релаксационной поляризации в твердых диэлектриках часто наблюдается еще одна ее разновидность — объемная поляризация. Под этим термином понимают ряд явлений, сходных между собой в том, что они вызывают поляризацию диэлектрика за счет образования в нем объемных зарядов [11]. Заряды в диэлектрике оказываются смещенными, но не на микрорасстояния, как при прочих видах поляризации, а на макроскопические расстояния. Продвижению свободных зарядов могут мешать дефекты кристаллической решетки, которые способны в некоторых случаях захватывать электроны и ионы.  [c.147]

Если ввести обозначение ём = 1 -Ь м то аррл можно рассматривать как прирост диэлектрической проницаемости диэлектрика за счет релаксационной поляризации Абрел = рел- В этих обозначениях операторная  [c.148]

Одной частотой релаксации обладает малое число материалов. Характерным примером такого материала является лсд из дистиллированной, воды при низких температурах. При температуре — 10 С время релаксации льда т=0,6-1()- с диэлектрическая проницаемость мгновенной поляризации Ём = 3,5 прирост проницаемости за счет релаксационной поляризации Абрел = 78. Используя эти исходные данные, можно рассчитать по формулам (9-43) — (9-47) частотные характеристики диэлектрических свойств льда (рис. 9-7). Частоте релаксации / С0и/(2я) = 1/(2лт) = 2,7 кГц соответст-  [c.149]

Экспери.меитальное исследование частотных зависимостей снойств диэлектриков показало, что у большинства диэлектриков с релаксационной поляризацией максимум фактора потерь значительно меньше Аерел/2, что противоречит годографу на рис. 9-6. Это явление объясняется тем, что ди-  [c.149]

Вид частотных характеристик релаксационной поляризации, показанных на рис. 9-7, физически объясняется уменьшением полупериода напряженности электрического поля по мере увеличения частоты. При низкой частоте полупериод Т 2 велик, релаксационная поляризация успевает полностью развиться, вектор поляризации совпадает по фазе с напряженностью поля и вещественная часть диэлектрической проницаемости наибольшая ей = е + Лбрел и tg 6п = 0. С ростом частоты поляризация не успевает завершиться за половину периода. Уже при частоте релаксации = 1/т полупериод Т 2 = ят и поляризация заметно отстает по фазе.  [c.150]


При трении всегда имеет место отставание движущейся частицы от той силы, которая вызывает движение. Поэтому в переменном электрическом по.те между по.ляризацией и напряженностью поля возникает разность фаз. Эта разность (раз достигает максимального значения при частоте /макс- В примере расчета характеристик льда на рис. 9-7 частота /макс 4,85 раза выше частоты релаксации. Полупериод при этой частоте лт 4,85 = 0,65 т, что явно мало для развития релаксационной поляризации. Отношение  [c.151]

И соответственно прирост диэлектрической проницаемости за счет релаксационной поляризации Дврел — серел = рел/( о )- Усиление теплового движения препятствует полному завершению поляризации диэлектрика, стре.мпсь нарушить преимущественную ориентацию дипольных моментов по направлению электрического поля. Отрицательное влияние повышения температуры заключается в ослаблении поляризации.  [c.152]

Физическая природа поляризации. Принято различать упругую (быструю, нерелаксационную) и неупругую (медленную, релаксационную) поляризации. Упругая поляризация завершается практически мгновенно за время t (с), намного меньшее полуперио-да Т 2 - 1/2 / (/— частота, Гц) приложенного напряжения. Поэтому процесс быстрой поляризации создает в диэлектрике только реактивный ток. К таким поляризациям относятся электронная (завершается за время 10 — 10 с) и ионная упругая (устанавливается за время 10 — 10 с). Неупругая поляризация завершается за время, соизмеримое с полупериодом приложенного напряжения.  [c.152]

В ходе тепловой ионной поляризации твердых диэлектриков переброс слабосвязанных ионов в электрическом поле происходит с потерями энергии. В некоторых диэлектриках с неплотной упаковкой объема частицами, например стеклах, где имеет место ионно-релаксационная поляризация, также наблюдаются закономерности изменения tg6 от температуры и частоты, характерные для дипольной поляризации. На рис. 5.24 приведены температурные и частотные зависимости для алюмоцннкосиликатного стекла — ситалла на основе оксидов SiOj, А1 0з и ZnO. Существование или отсутствие максимумов tg 6 в температурной и частотной зависимостях (рис. 5.24) зависит от условий термообработки стекла.  [c.164]

Различают следующие виды поляризации в диэлектриках 1) электронная, 2) ионная, 3) ионно-релаксационная, 4) дииольно-релакса-ционная, 5) электронно-релаксационная, 6) уируго-дииольная, 7) ядер-ного смещения, 8) структурная, междуслойная, 9) спонтанная, 10) остаточная. -  [c.6]

Дипольно-релаксационная ориентационная) поляризация определяется поворотом и ориентацией диполей в направлении поля и свя-зана с тепловым движением частиц. Дипольные молекулы, находящиеся в хаотическом тепловом движении, ориентируются в направлении действующего внешнего электрического поля, создавая эффект поляризации диэлектрика. При снятии внешнего электрического поля поляризация нарушается беспорядочным тепловым движением молекул. Диполи приобретают самое разнообразное положение в пространстве, и эффект полярного их расположения исчезает. Время установления и нарушения поляризации определяется временем релаксацит дипольных молекул.  [c.7]

Время дипольно-релаксащюпной полярпзацин равно 10 ч- Ог сек. Дипольно релаксационная поляризация с увеличением температуры и уменьшением вязкости вещества растет, достигая онределенного максимума, а затем падает, нарушаясь сильным возрастанием интенсивности теплового движения молекул. Параллельно с этим растет, достигая максимума, и tg б, снижение значений которого после максимума более резкое.  [c.8]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]


Смотреть страницы где упоминается термин Поляризация релаксационная : [c.544]    [c.544]    [c.111]    [c.148]    [c.151]    [c.152]    [c.152]    [c.153]    [c.153]    [c.36]    [c.60]    [c.246]   
Установки индукционного нагрева (1981) -- [ c.146 ]



ПОИСК



Ионно-релаксационная поляризация и диэлектриче

Ионно-релаксационная поляризация и диэлектрические потери высоковольтная поляризация

Поляризация

Поляризация дипольно-релаксационна

Поляризация ионно-релаксационная

Поляризация тепловая (прыжковая, релаксационная)

Поляризация электронно-релаксационная

С релаксационная



© 2025 Mash-xxl.info Реклама на сайте