Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Описание оптических поверхностей

ОПИСАНИЕ ОПТИЧЕСКИХ ПОВЕРХНОСТЕЙ  [c.55]

Приём упругих колебаний на поверхности изделия производится почти исключительно с помощью кварцевого зонда (щупа) [3]. Воспринимая упругие колебания, кварц-приёмник развивает электрический заряд на своих обкладках. Приёмно-усилительное устройство позволяет вести наблюдение по стрелочному прибору или с помощью записи на фотобумагу, восковку и т. п. Описание оптических приёмных устройств см. [12, 19, 21]. Для цехового контроля эти устройства мало пригодны, но для некоторых исследований могут быть использованы они дают возможность обозреть  [c.276]


В первой главе вводятся основные физические понятия и положения, используемые в рентгеновской оптике, а также сообщаются сведения из атомной физики, необходимые для описания оптических свойств материалов в МР-диапазоне. Рассматривается актуальный вопрос экспериментального определения оптических констант. В п. 1.4 обсуждаются результаты экспериментальных исследований рассеяния, сопровождающего отражение рентгеновского излучения реальной поверхностью зеркала. В п. 1.5, 1.6 анализируются возможности применения МР-излучения для ис-  [c.5]

Такое описание оптических свойств поверхности твердого тела — абстракция, имеется целый ряд примеров, когда оно оказывается недостаточно полным.  [c.48]

Определение высоты профиля. Из описания оптической схемы прибора следует, что высота профиля исследуемой поверхности  [c.170]

Такую же методику построения волнового фронта можно применить для описания перехода волны из изотропной среды в анизотропную. Если для исследуемого криста.лла известно направление оптической оси, то построение в нем двух волновых поверхностей (обыкновенной и необыкновенной) не представит труда.  [c.132]

Модель слоя пространства. Как быто показано выше, модельное представление источника излучения сводится к описанию некоторой излучающей или отражающей поверхности (чаще всего плоскости). Оптическая система представляется некоторым фазовым транспарантом, причем в качестве ее входной части рассматривается плоскость входного зрачка. Искажения фронта волны, производимые оптической системой, описываются дифракцией на зрачках системы с учетом фазовых искажений, которые вносят оптические элементы.  [c.55]

Во многих случаях шлифованные вставки заменяются участками труб с проточенной поверхностью. Состояние внутренней поверхности этих вставок изучается визуально либо с помощью оптического микроскопа, как до, так и после снятия продуктов коррозии одним из описанных выше способов.  [c.15]

При стандартизации размерных рядов неровностей поверхности в начале использовали Rq (или Я к) — среднее квадратическое отклонение профиля неровностей от его средней линии (США) и Ra —> среднее арифметическое, точнее, среднее абсолютное отклонение его от той же линии (Англия). Эти параметры измеряли электромеханическими профилометрами возможно потому, что они представляют собой хорошо известные в электротехнике эффективное и среднее значения функций, а также статистические характеристики, подходящие для описания рассеивания случайной ординаты профиля относительно ее среднего значения, за которое в данной ситуации была принята средняя линия. Позднее, повсеместно, а также в международном масштабе, был принят параметр Ra из соображений, приведенных выше. Сохранившийся до настоящего времени параметр Ra используют с начала 40-х годов, т. е. более 30 лет. Для измерений оптическими приборами (двойными микроскопами и микроинтерферометрами) параметр Ra не подходит, так как требует трудоемких вычислений. Поэтому применительно к этой категории средств измерений неровностей принимали различные модификации характеристик общей высоты неровностей, такие, как R max — максимальная на фиксированной длине высота неровностей (ранее обозначавшаяся через Я а с). Яср — средняя высота неровностей и Rz—высота неровностей, определяемая по 10 точкам профиля. Для сопоставимости результатов измерений и однозначности стандартизуемых величин потребовалось выделить шероховатость из общей совокупности неровностей поверхности. Это сделали путем установления стандартного ряда базовых длин, полученного из рядов предпочтительных чисел. Значения параметров определяют на соответствующих базовых длинах. Неровности с шагами, превышающими предписанную базовую длину, в результат измерений шероховатости не входят, и стандартизация шероховатости поверхности на них не распространяется.  [c.59]


Многие признаки качества не могут быть охарактеризованы количественно путём измерения величины отклонения признака от заданной нормы (например, окраска, пятна, трещины, волосовины и другие дефекты на поверхности изделия, раковины в литье, пузыри в оптическом стекле и т. п.). Если такой признак качества поддаётся простому численному подсчёту (число дефектов), к нему могут применяться некоторые описанные выше методы. Если же числен-  [c.630]

Что касается несветящихся (холодных) поверхностей модели и несветящейся среды, то они моделируются описанным образом с соблюдением инвариантности оптических свойств поверхности (а и г) и соответствующих критериев для среды (Ви и S ). При этом необходимо обратить внимание на отсутствие внешнего освещения модели, с целью устранения которого модель помещается в темную камеру с черными стенками.  [c.316]

Например, при световом моделировании объемного излучения среды в топках и печах топочное пространство разделяют на две характерные зоны зону горения (факел) и зону потухших продуктов сгорания. Факел воспроизводится в модели описанным выше способом в виде светящейся поверхности, замыкающей геометрически подобный объем зоны горения. Продукты сгорания, занимающие остальной объем топочной камеры, моделируются с помощью чисто рассеивающей среды, исходя из допущения, что они находятся в состоянии, близком к локальному радиационному равновесию. При этом оптические характеристики светящегося факела моделируются посредством создания поглощательной способности его поверхности заданной величины. Коэффициент рассеяния моделирующей среды выбирается таким образом, чтобы выполнялось условие равенства критериев Бугера в модели и образце. Описанный прием светового моделирования излучающего топочного объема является простым и удобным. Он успешно использовался в [Л. 27]. Однако к его недостаткам следует отнести те погрешности, которые возникают при замене объемного излучения, поглощения и рассеяния факела поверхностной светимостью, поглощением и отражением его модели, а также погрешности от принятия допущения в среде локального радиационного равновесия.  [c.318]

Было показано, что в сечении формы имеется несколько областей с различным структурным строением. Описанная выше первая область включает зону глубиной 2 мм от внутренней поверхности. Ниже этой области до глубины 4-5 мм находится в значительной степени неоднородная бейнитная структура. В областях, расположенных еще глубже, вплоть до наружной поверхности, не отмечено структурных изменений, которые можно наблюдать с помощью оптического микроскопа.  [c.39]

Он используется для исследования растворов и расплавов полимеров. Конструктивно прибор выполнен по схеме, описанной в работе [12]. Внутренняя измерительная поверхность приводится во вращение от падающего груза (от 3 г до 25 кг). Отсчет углов поворота внутреннего цилиндра производится визуально по барабану с делениями и указателю, а также оптическим способом. Отличительной особенностью прибора является применение комплекта сменных измерительных узлов, в том числе пары конус—плоскость (для очень вязких систем) и биконического узла для растворов с легко летучими растворителями. Это дало возможность на сравнительно несложном приборе реализовать напряжения сдвига от 3 до 10 и скорости дефор-  [c.252]

Возможны различные подходы при описании ДОЭ как компонентов оптических систем. Один из них заключается в представлении дифракционного элемента как тонкой рефракционной линзы, показатель преломления и радиусы поверхностей которой стремятся к бесконечности таким образом, что оптическая сила линзы остается постоянной. В работах [64, 65] показано, что хроматические и аберрационные свойства такого элемента в пределе совпадают со свойствами дифракционной линзы. Указанный подход удобен тем, что позволяет без особых затруднений вести расчет оптических систем с ДОЭ на базе стандартных вычислительных программ, созданных для рефракционной оптики. Ясно, однако, что предельный случай, когда показатель преломления и радиусы поверхностей бесконечны, не может быть просчитан с помощью программы вычисления угла преломления, тогда как при любых отступлениях от этих условий свойства модельной рефракционной линзы все-таки отличаются от свойств ДОЭ.  [c.7]


Знания геометрической волновой поверхности на выходе оптической системы или, что эквивалентно, семейства лучей, ортогональных к этой поверхности, во многих случаях достаточно для описания системы. Оно позволяет найти фокальные точки, каустики, другие характеристики. Однако в некоторых случаях геометрическая оптика неприменима, например в окрестности фокальной точки, т. е. там, где радиус кривизны волновой поверхности сравним с длиной волны. В этой области волновое уравнение решают с помощью интеграла Кирхгофа — Френеля. Обычно применяют комбинированный подход, заключающийся в том, что методами геометрической оптики на выходе оптической системы определяют волновую поверхность, используя ее для вычисления дифракционного интеграла в окрестности фокальной точки. Практика подтверждает допустимость и плодотворность такого метода.  [c.10]

Следует отметить ограничения в использовании диффузионного приближения. Оно справедливо внутри среды, но неприменимо вблизи границ, где не выполняются условия (9.13). Оно не дает полного описания физического процесса вблизи границ, так как не включает в рассмотрение члены, учитывающие излучение от граничных поверхностей. Однако внутри оптически толстой области влияние граничных эффектов пренебрежимо мало, поскольку излучение, испускаемое граничными поверхностями, не достигает внутренних слоев.  [c.346]

II II двухмерных, выглядят они не очень естественно — им не хватает реальных цветов, теней, освещения и т.д. Тонирование делает изображение трехмерных моделей более естественным. Этот способ визуализации применяется к трехмерным поверхностям и твердотельным моделям. В главе 22, Просмотр трехмерных моделей , описан процесс раскрашивания трехмерных моделей. Тонирование — это более сложная процедура, которая при определенных навыках позволяет создать абсолютно реалистичное изображение трехмерной сцены с учетом самых разнообразных оптических эффектов.  [c.818]

Для получения информации о рельефе поверхности используются различного вида щуповые приборы (профилометры, профилографы), оптические интерферометры, туннельные и сканирующие атомно-силовые микроскопы и т. д. Они позволяют с той или иной степенью точности воссоздать микрорельеф поверхности на заданном ее элементе, а также определить некоторые её характеристики (осреднённый высотный и шаговый параметры, средний наклон и радиус кривизны в вершине неровности, среднее количество неровностей на единицу площади и т.д.). Развитие измерительной техники приводит к изменению представлений о топографии, что стимулирует возникновение новых математических моделей, используемых для описания топографии поверхности. С другой стороны, при создании приборов для исследования топографии в конструкцию и программное обеспечение закладывается возможность измерения и расчёта характеристик, наиболее широко используемых при моделировании. Обзор экспериментальных методов исследования топографии поверхностей содержится в [59, 235].  [c.11]

Детальное описание оптических свойств поверхностей без пленок и с пленками выходит за рамки настоящей ккиг [. Читателю, пожелавшему приобрести дополнительные знания в данной области, рекомендуется обратиться к обстоятельным обзорным статьям Уинтерботтома [633, 636].  [c.264]

Наиболее распространенными поверхностями в оптике являются плоскость и сфера, что объясняется простой технологией их получения благодаря свойству самопритираемости, а также простотой расчета хода лучей. Применение ЭВМ сделало возможным проектирование оптических систем с поверхностями сколь угодно сложной формы, а успехи технологии, в частности появление станков, управляемых ЭВМ, обещают в ближайшем будущем большее использование несферических поверхностей, поэтому в настоящем параграфе мы рассмотрим описание, пригодное практически для любых регулярных оптических поверхностей.  [c.55]

Изложенная теория идеальной оптической системы носит совершенно общий характер, т. е. применима к аксиально симметричным системам произвольной конструкции. Система оказывается полностью заданной, если известно взаимное расположение четырех кардинальных точек. Положение этих точек в каждой конкретной системе, разумеется, зависит от ее конструкции (от кривизны преломляющих и отражающих поверхностей, их расположения, показателя преломления и т. п.). Существует несколько методов нахождения кардинальных точек. Один из них состоит в последовательном расчете хода лучей, падающих на систему слева и справа параллельно оси. При этом к каждой преломляющей поверхности применяется (формула (71.2) или (71.3). Сущность другого, более употребительного метода, ясна из следующего. Пусть даны две оптические системы и для них известны фокусные расстояния и положения главных точек, причем обе системы расположены на общей оси на некотором известном расстоянии друг от друга тогда можно вычислить (фокусные расстояния и положения кардинальных точек сложной системы, состоящей из этих систем. Таким образом, если сложная система состоит из двух или больщего числа подсистем с известными кардинальными точками, то производя описанный процесс сложения несколько раз, можно определить параметры системы в целом.  [c.300]

Контроль формы зеркальных сферических и асферических поверхностей. Такой контроль практически не отличается от описанного выше метода. Оптическая схема, приведенная на рис. 41, представляет собой осевую схему голографического асферометра на базе интерферометра Майкельсона. Плоская волна от источника света (на рисунке не показан) разделяется полупрозрачным зеркалом 2 на две. Прошедшая волна освещает контролируемое 102  [c.102]


Изменение оптической плотности в зоне контакта стекломассы с расплавом олова изучали по методике микротомирования на образцах 0 2 мм, также вырезанных на ультразвуковом прошивочном станке со стороны контактной поверхности слитков стекломассы. Для реализации методики в конструкцию одного из серийно выпускаемых микротомов [9] были внесены небольшие изменения, описанные ниже. При микротомировании стекол из-за высокой их твердости пригодны только алмазные режущие инструменты [1]. Поэтому стальной нож микротома был заменен державкой с алмаз-  [c.212]

Резюме. Механические траектории консервативных систем могут быть получены из частного решения уравнения в частных производных Гамильтона — Якоби с помощью построения ортогональных траекторий к поверхностям S = onst. Это построение аналогично построению волнового фронта и световых лучей в геометрической оптике. Поверхности равного времени в оптике соответствуют поверхностям равного действия в механике, а принцип наименьшего времени Ферма — принципу наименьшего действия или принципу Якоби. И оптические и механические явления могут быть описаны как с помощью волн, так и с помощью частиц. При описании с помощью волн мы оперируем с бесконечным семейством поверхностей, которое определяется уравнением в частных производных Гамильтона. При описании же с помощью частиц мы оперируем с ортогональными траекториями к этим поверхностям, и они определяются принципами. Ферма и Якоби. Аналогия распространяется только на траектории механических частиц, не касаясь того, как движение происходит во времени. Кроме того, ири этой аналогии среди всех возможных механических траекторий выделяются те, по которым движение начинается перпендикулярно к заданной поверхности.  [c.314]

Профилометрический метод. Так же, как и в двух описанных выше оптических методах, в профилометрическом методе определения толщины покрытия необходимо получить уступ между покрытием и основным металлом при удалении покрытия на локальном участке поверхности. В данном случае, однако, толщина определяется из профилограммы, полученной путем регистрации изменений положения стальной иглы при ее перемещении по испытуемой поверхности. Для усиления передаваемого движения иглы увеличения графического изображения исследуемого профиля поверхности, по которому можно провести непосредственные измерения, используются электронные приборы.  [c.141]

Описанное устройство работает следующим образом. Свет от осветителя 5 направляется на экран 4, а затем через волоконные световоды освещает всю поверхность рабочей части испытываемого объекта 1. Отраженный от объекта свет направляется по тем же световодам, передавая изображение рабочей части испытываемого объекта на экран. Получив таким образом на экране развернутое изображение поверхности рабочей части объекта 1, можно фотографировать его непосредственно с экрана или после предварительного увеличения с помощью микроскопа б с фотонасадкой 7. Полезное оптическое увеличение пока не превышает ХЗО—40 из-за малой разрешающей способности волоконных световодов [5, 6]. Освещать экран, а следовательно, и рабочую часть испытываемого объекта желательно с помощью стробоскопа, работающего синхронно с частотой нагружения об-  [c.193]

В работах [Л. 104, 430] исследован процесс радиационного теплообмена ламинарного потока с заданным профилем скоростей, текущего в канале. При этом так же, как и в исследованиях внешней задачи обтекания поверхности, пренебрегается аксиальным переносом тепла за счет теплоироводности и излучения. Далее автор, исходя из результатов исследования чисто конвективного теплообмена на стабилизированном участке, делает допущение о постоянстве безразмерного температурного профиля в каждом сечении потока, что позволяет свести задачу к одномерной. При описании радиационного теплообмена автором используются интегральные уравнения теплообмена излучением применительно к плоскому слою. Представляя искомую функцию безразмерной температуры в виде одномерного ряда Тэйлора по оптической толщине слоя и подставляя ее в исходное интегральное уравнение, автор приходит к нелинейному дифференциальному уравнению, решаемому затем численно. При этом производится ограничение первыми тремя членами ряда, что дает дифференциальное уравнение второго порядка. Полученные результаты численного решения были сопоставлены автором [Л. 104] с решениями методом диффузионного приближения и приближения оптически тонкого слоя.  [c.400]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°. Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория. Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела. Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом. В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]

Все изложенное представляет собой основные положения волнового подхода к теории. ДОЭ. Аналогичный, но несколько отличающийся анализ содержится в работе [15]. Волновой подход, как будет ясно из дальнейшего, очень удобен при описании фокусирующих и аберрационных свойств ДОЭ, а также незаменим для расчета структуры элементов (см. гл. 7), однако необходимо отметить и некоторые присущие ему ограничения. В силу того что амплитуда всех волновых полей предполагалась одинаковой (по модулю) в пределах ДОЭ, развитый формализм не вполне точно описывает такие объекты, как голографические оптические элементы, поскольку при их записи амплитуды интерферирующих волн обязательно меняются по поверхности элемента. Совершенно не укладьщаются в рамки формализма голограммы сложных реальных объектов, где записываются и восстанавливаются волновые поля с большими перепадами амплитуды. Ниже, однако, рассматриваются простейшие дифракционные структуры, для которых волновой подход является вполне приемлемым приближением.  [c.14]


Для сравнительного анализа аберрационных свойств ДЛ и СПП необходимы сопоставимые выражения аберраций различных оптических элементов. Наиболее широко распространенное описание аберраций преломляющих поверхностей с помощью, функции, называемой эйконалом Шварцшильда [7, 45], во-первых, совпадает с развитым ранее представлением аберраций ДЛ только в третьем порядке малости, во-вторых, очень громоздко в более высоких порядках [50]. Недавно предложен новый подход к определению волновой аберрации [37], дающий возмож- ность сравнительно легко сопоставлять различные оптические элементы.  [c.29]

Г. Соммаргреном в работе [70] описан новый оригинальный прибор — оптический гетеродинный профилометр. По принципу действия он является разновидностью интерферометра. Поверхность образца в оптическом гетеродинном профилометре освещается двумя сфокусированными пучками света, слегка различающимися по частоте и поляризованными во взаимно перпендикулярных плоскостях. Отразившись, эти пучки интерферируют так, что результирующая фаза модулируется в соответствии с разницей высот между освещенными точками поверхности. Если один из пучков сфокусирован на фиксированной точке, а другой движется по поверхности, то можно измерить высоты точек по линии сканирования второго пучка, т. е получить профиль поверхности. Деление светового потока на два пучка осуществляется призмой Волластона. В плоскости образца разделение пучков составляет 100 мкм. Исследуемый образец помещается на вращающийся столик и один из пучков совмещается с осью вращения столика, а второй сканируется по образцу при вращении. Небольшой сдвиг в частоте пучков происходит за счет расщепления основной моды Не—Не-лазера (расщепления Зеемана), трубка которого помещена в аксимальном магнитном поле. Описанный прибор позволяет получить чувствительность к высоте шероховатости до 0,1 нм, совмещая в себе преимущества интерферометра с пре-  [c.233]

В схеме прибора предусмотрен ряд устройств для юстировки. Так, правильная установка образца, обеспечивающая выход и попадание зеркально отраженного пучка на приемник 10, достигается с помощью системы зеркал 11 и приемника 1, а установка приемника 8 в точку, где собираются отраженные от зеркала 7 лучи, осуществляется визуально с помощью оптического устройства 4, снабженного волоконной оптикой. В ряду приборов отметим установку [42], где реализован относительный метод измерения TIS, и измерение а проводится сравнением с эталонным образцом, среднеквадратичная шероховатость поверхности которого измерена с максимальной точностью. Установка для измерения TIS с фотометрическим шаром фирмы Балзерс схематично изображена на рис. 6.6, где излучение от Не—Ne-лазера 1, проходя прерыватель 2, ослабитель 3 и апертуру 4, падает на поверхность исследуемого образца 5. Зеркально отраженный поток выводится из фотометрического шара через отверстие 9. Интегральное значение рассеянного потока с детектора 8 поступает на синхронный усилитель 6, куда одновременно поступает опорный сигнал падающей интенсивности. Сигнал с синхронного усилителя пропорционален отношению /о//д, входящему в формулу (6.11). Измеренное значение а индицируется на цифровом вольтметре 7. Значения а порядка 0,5 нм были измерены с помощью описанной установки фирмы Балзерс в работе [37]. Как было показано в работе [30 ], метод позволяет проводить измерения а и не дает возможности определения параметров поверхности в плоскости (X, У). Это ограничение метода TIS было преодолено в приборе, в котором была обеспечена возможность измерения углового  [c.237]

Когда речь идет о МИС на изогнутых поверхностях, основной интерес представляют отражающая способность зеркала и оптическое качество отраженного пучка. Из предыдущего ясно, что оба свойства сложным образом зависят от атомной и субатомной структуры поверхности подложки и самой МИС, от оптических констант элементов, входяпгих в состав МИС и т. п. До сих пор большинство экспериментальных работ было направлено на выяснение взаимосвязи свойств МИС с технологией ее синтеза, описание параметров МИС в широком диапазоне длин волн, создание уникальных элементов — зеркал для эталона Фабри—Перо [60—62] и многослойников с переменным по глубине и сечению периодом [61, 64], а также на различные применения МИС. Как правило, в этих работах использовались плоские  [c.439]

Опыты проводили [100] на образцах (пластинах) размером 180 X 100 X 3 мм. Пластины подвергали закалке при температуре 820° С в масле, а затем отпуску при температуре 180° С. Образцы имели твердость (57—60) HR . Термообработанные пластины шлифовали с двух сторон до толщины 1,6—2,75 мм. Исходную трещину у дна концентратора создавали локальным охрупчиванием материала путем наводороживания 20%-ным водным раствором серной кислоты, а затем нагрун<али на разрывной машине до появления трещины. Испытания проводили на разрывной машине, оборудованной тензорезисторным силоизмерителем и оптической приставкой. Для измерения длины распространяющейся трещины на поверхность образца в окрестности трещины прикрепляли пленочную (25 мм) шкалу с ценой деления 0,05 мм. Описанная методика позволяла надежно фиксировать момент старта трещины 1 при нагрузке и измерять общую длину трещины. Указанная схема нагружения позволяла проводить 15—20 измерений на участке прироста длины трещины AZ ягз 15 мм.  [c.160]

Нри изучении природных ресурсов Земли путем анализа космической видеоинформации и данных подспутникового эксперимента возникает задача описания амнлитудно-фазовых искажений изображения земной поверхности, вызванных рассеянным в атмосфере излучением. Методика исследования нространствен-ной структуры излучения на основе оптической пространственно-частотной характеристики атмосферы разработана в [13, 63]. Обобщение метода итераций  [c.776]


Смотреть страницы где упоминается термин Описание оптических поверхностей : [c.95]    [c.259]    [c.26]    [c.62]    [c.508]    [c.28]    [c.249]    [c.515]    [c.164]    [c.227]    [c.122]    [c.527]    [c.701]    [c.95]   
Смотреть главы в:

Автоматизация проектирования оптических систем  -> Описание оптических поверхностей



ПОИСК



Описание



© 2025 Mash-xxl.info Реклама на сайте