Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зоны в объеме

В однобарабанной схеме все зоны в объеме барабана котла расположены непосредственно одна над другой. В схеме с разделительным барабаном часть парового объема как бы вынесена в разделительный барабан из основного, в котором остаются только водяной объем и часть парового объема. Одновременно основной барабан играет роль своеобразного сухопарника по отношению к разделительному. Капли воды, выпавшие из потока пара, в этом сухопарнике падают на поверхность воды.  [c.52]

При расчете лучистого теплообмена в печах и топках бывает задано количество тепла, вводимого в камеру с топливом. Если из этой величины вычтем химическую неполноту сгорания, то получим величину химического тепловыделения в камере. Ориентируясь на известные из опыта данные по горению, можно приблизительно оценить характер распределения тепловыделения по длине камеры. Поэтому наиболее естественно в качестве заданной величины при расчетах принять распределение химического тепловыделения по зонам в объеме камеры. Температуры объемных зон следует рассматривать как определяемые.  [c.381]


В помещениях для хранения цианистых солей и химикатов кроме местной вытяжки от шкафов для взвешивания цианистых солей должна быть предусмотрена общеобменная вытяжка из нижней зоны в объеме трехкратного воздухообмена.  [c.213]

Относительное распределение в объеме слитка зоны столбчатых и равноосных кристаллов имеет большое значение.  [c.53]

Контактная сварка. Этот процесс применяют только для сварки металлов и основным источником энергии в нем служит теплота, выделяемая электрическим током в зоне контакта соединяемых деталей, электрическое сопротивление которой выше сопротивления основного металла. Некоторое количество теплоты при контактной сварке может выделяться и в объеме свариваемых деталей вследствие работы электрического тока при прохождении через внутренний объем деталей, имеющих некоторое электрическое сопротивление.  [c.132]

Часть рабочего объема, в котором можно выполнять операции с объектом манипулирования, называют з о-ной обслуживания или рабочей зоной. Так,для манипулятора,изображенного на рис. 11.13, а, максимально возможная рабочая зона — пространство между сферами радиусом Л) = = АО и радиусом Г2 = АО", а в конкретном случае зона обслуживания лишь часть та кого пространства (штриховая линия на рис. 11.13, а) для манипулятора, изображенного на рис. 11.13,6, максимально возможная рабочая зона — тор (кольцо кругового сечения) с размерами ri = AD и r=B D (рис. 11.13, в), а в конкретном случае рабочая зона — часть такого тора (штриховая линия на рис. 11.13,6). Манипулятор с тремя поступательными парами (рис. 11.14, а) имеет рабочую зону в виде прямоугольного параллелепипеда, размеры которого а, Ь, с определяются максимальными перемещениями (ходами) соответствующих звеньев в своих направляющих звена 2 вдоль оси у, звена 3 вдоль оси х и звена / относительно оси 2. Для манипулятора с одной вращательной и двумя поступательными парами (рис. 11.14,6) максимально возможная рабочая зона — пространство в виде полого цилиндра, для которого разность радиусов Г2—г определяется мак-  [c.326]

Контроль сплошности основного металла (в объеме от 15 до 30%) сосудов и трубопроводов ультразвуковым методом в соответствии с [100, 103, 114-116] и специальными методиками, учитывающими специфику развития водородного расслоения, проводят в зонах шириной 200 мм по обе стороны от контролируемых сварных швов и ПОУ. Остальные зоны обследуют согласно карте контроля. УЗК основного металла конструкции осуществляют с помощью прямого раздельно-совмещенного преобразователя (частота 4-5 МГц, рабочий диаметр не более 18 мм) путем многократного дискретного линейного сканирования дефектного участка конструкции в продольном направлении с шагом не более 20 мм. В области контура дефекта и в примыкающей к ней зоне шириной 100 мм шаг сканирования не должен превышать 10 мм. При малых размерах дефектов в плане (менее 50 мм) и их условной высоте более 20% толщины стенки конструкции проводят сплошное сканирование. Условные линейные размеры протяженных (более 50 мм) дефектов определяют с точностью не менее одного шага сканирования, а глубину их залегания — не менее 0,3 мм.  [c.162]


Скорость поступления активированных ядер в теплоноситель из объема всей активной зоны в момент времени 1 будет составлять ктР р [ядро сек].  [c.93]

Мощность дозы ионизирующих излучений контролируется в точках, удаленных от центра активной зоны на расстояния, значительно превышающие размеры самой зоны, В связи с этим активную зону можно рассматривать как сферу объемом, равным объему цилиндра. Радиус эквивалентной феры i 3=57,2 см.  [c.308]

В идеальном полупроводнике, если все электроны находятся в наинизшем энергетическом состоянии, в зоне проводимости не должно быть электронов. Такое положение теоретически возможно лишь при абсолютном нуле. При обычных температурах в зоне проводимости всегда найдется некоторое количество электронов, заброшенных туда из валентной зоны путем термического возбуждения. Мгновенная плотность электрического тока ], связанного с движением какого-либо электрона, пропорциональна его скорости у. Плотность тока, связанного с движением одного электрона в объеме Й, может быть представлена в виде  [c.88]

Аналогично определяем число дырок бр в валентной зоне, занимающих электронные уровни энергии в интервале от Е до Е+бЕ с1р= Ы (Е)1оР(Е, Т) с1Е. Полное число дырок в валентной зоне в расчете на единицу объема кристалла (концентрация)  [c.111]

В горизонтальном отстойнике (см. рис. 19.5) обрабатываемая вода, поступающая через распределительный лоток или затопленный водослив, направляется с помощью струенаправляющей или дырчатой перегородки в объеме сооружения. Пройдя через отстойник, осветленная вода собирается с другой торцевой стороны лотком либо перфорированной трубой. В отстойнике различают две зоны зону осветления (верхняя часть объема сооружения) и зону накопления и уплотнения осадка (нижняя часть сооружения).  [c.231]

Молекулы, заполняющие пристенную зону, в отличие от внутренних групп молекул испытывают несимметричное воздействие сил притяжения, увлекающих их внутрь объема. Это воздействие пропорционально, во-первых, концентрации молекул в пристенной зоне и, во-вторых, концентрации молекул во внутренней части объ-  [c.102]

Пламенем принято называть ту зону газового объема, в которой протекают реакции горения. Пламя может быть прозрачным или светящимся. Q горючести газа судят по характеру горения в трубках, наполненных смесью газа с окислителем, или по горению газа в атмосфере.  [c.229]

На рис. 6.2 представлена зависимость коэффициента теплоотдачи а от плотности теплового потока q при кипении воды в большом объеме под атмосферным давлением. Участок АВ этой кривой соответствует конвективному теплообмену в однофазной среде в условиях естественной конвекции. Участок D характеризует область развитого пузырькового кипения, при котором на теплоотдающей поверхности наблюдается уже весьма большое число действующих центров парообразования. Между областями естественной конвекции в однофазной среде и развитого пузырькового кипения имеется переходная зона, в которой паровую фазу генерируют отдельные центры. С увеличением плотности теплового потока число действующих центров парообразования быстро растет и это способствует интенсификации процесса теплообмена. Многочисленные опытные данные показывают, что в области развитого пузырькового кипения коэффициент теплоотдачи а пропорционален плотности теплового потока, q в степени, примерно равной 0,7 , т. е.  [c.164]

В металлах с ГЦК решеткой имеет место химическое взаимодействие дислокаций с примесями с образованием атмосфер Сузуки. Это взаимодействие обусловлено тем, что при возникновении дефектов упаковки с гексагональной решеткой растворимость в них примесного атома может быть больше, а энергия меньше, чем в бездефектной зоне (в объеме основного металла). Легирующие элементы в сталях обычно снижают энергию дефекта упаковки и тем самым увеличивают его ширину. В свою очередь, чем  [c.148]

Одним из путей интенсификации экстракционных процессов является их проведение во взвешенном слое. Так, например, известны многочисленные аппараты для растворения различных природных солей или других материалов в восходящем потоке растворителя. Сорбционные процессы при ионообмене также часто осуществляют во взвешенном (псевдо-ожиженном) слое (в условиях внешнедиффузионной кинетики). Проведение процесса в псевдоожиженном слое приводит к ликвидации мертвых зон в объеме ионита, увеличивает его полную динамическую обменную емкость, повышает скорость сорбции, позволяет осуществлять сорбцию из труднофильтруемых растворов с мелкодисперсными частицами (например, из суспензий) и т. д. Большим достоинством проведения процесса в псевдоожиженном слое ионита является стабильность его гидравлического сопротивления в широком диапазоне нагрузок при этом также легко может быть осуществлен гидротранспорт частиц ионита.  [c.608]


При ОВФ пучков с аберрациями типа / происходит сильное ио кажение их пространственной структуры в ближней зоне. Качественно это можно объяснить невыполнением порогового условия ВРМВ для центральной зоны пучка, которая не перемешивается с периферийными зонами в объеме взаимодействия. Вследствие этого умень-  [c.170]

Вредные примеси, содержащиеся в олове (до 3,5% для марки олова 04) в обыиных условиях храпения и (применения, в том числе в расплаве при температуре до 600°С, не выделяются в воздух рабочей зоны в объемах, превышающих предельно допустт1у]о ковцентрацгао в соответствии с ГОСТ 12.1.005 76.  [c.78]

Рис.3.2. а — Зависимость энергии электронов от квазиимпульса в плоскости поверхности кристалла. Заштрихованные области — разрешенные зоны в объеме, сплошная линия — ПЭС. Пунктир — ПЭС для поверхностной сверхрешетки с удвоенным периодом, б — интегральные энергетические спектры объемных и поверхностных состояний (суммирование по всем возможным к ) стояний В данном случае не происходит из-за различия квазиимпульсов. По этой причине ПЭС, делокализованные в плоскости поверхности и не смешивающиеся с объемными состояниями, имеются на поверхности не только полупроводников и диэлектриков, но и металлов.  [c.79]

В результате повышения плотности пульпы и крупности частиц в ннжней части гидроциклона уплотненная пульпа вращается почти как твердое тело. Распределение пульпы по плотности и ее твердой фазы по крупности в гидроциклоне диаметром 1000 мм, работавшем в операции поверочной классификации в замкнутом цикле с мельницей объемом 70 м , показано на рис. 111.27 [33]. Можно выделить четыре зоны в объеме работающего гидроциклона зону песков 4, занимающую пространство вблизи Песковой насадки зону питания исходной пульпы 3, располагающуюся концентрически внутри зоны песков 4 промежуточную зону 2, в которой круПность твердой фазы и плотность пульпы изменяются от крупности и плотности исходной пульпы до крупности и плотности слива зону слива I, находящуюся непосредственно под сливным патрубком. В Зависимости от конструкции гидроциклона (в частности от угла конусности) и от условий работы относительный объем этих зон может существенно изменяться.  [c.187]

Выя БИМ зоны рабочего объема, в которых коэффициент сервиса (-) = 1. Эти зоиы мы будем искать в виде пространства, о1 ран чениого полусферами. Определим наружный предел зоны. Задача сводится к нахождению таких точек с радиусами-векторами г = / 1, в которых при некотором направлении вектора величина г — ij достигнет наибольшего значения  [c.625]

Реализация этого принципа позволяет выравнить температуры топлива в объеме активной зоны, уменьшить разницу между температурами топлива и гелия, добиться увеличения объемной плотности теплового потока.  [c.6]

Начальные деформации в поперечном и продольном направлениях равномерно распределены по зоне В (рис. 5.17), и их величины определяются погонными объемами продольного и лоперечного укорочения, полученными в результате решения термодеформационной задачи  [c.305]

Электромагнитное поле ЭМП распределено в объеме с различными средами (магнитопровод, воздушные зазоры, электропроводящие материалы и диэлектрики и т. п.), которые имеют сложную геометрическую конфигурацию поверхностей раздела. Учитывая это, а также нелинейность свойств магнитной среды и трехмерность объема ЭМП, можно представить, что расчет электромагнитного поля с помощью (4.8) в полном объеме ЭМП практически невозможен даже при использовании наиболее мощных современных ЭВМ. В связи с этим обычно осуществляется декомпозиция электромагнитного поля на отдельные составляющие и достаточно простые участки. Так, например, в активном объеме ЭМП при определенном-удалении от торцов имеется значительная средняя область, в которой трехмерное поле можно расматривать как совокупность идентичных распределений плоскопараллельных полей, плоскость которых перпендикулярна оси вращения. Наоборот, в зоне лобовых частей ЭМП свести трехмерное поле к двухмерному не удается, но и здесь возможны определенные упрощения при учете симметрии относительно оси вращения.  [c.89]

Ядерные реакторы имеют активную зону, в которой находится ядерное топливо и замедлитель и где протекает самоподдерживаю-щийся цепной процесс деления ядер. Размеры и наличие границ активной зоны существенно влияют на баланс нейтронов в цепном процессе. Число нейтронов, возникающих в активной зоне, пропорционально ее объему, тогда как число нейтронов, покидающих активную зону, пропорционально ее поверхности. Поэтому при очень малых размерах реактора число покидающих нейтронов будет настолько относительно большим, что цепной процесс не сможет идти. Объем (или масса) реактора, при котором достигается критический режим k = 1) реактора, называется критическим объемом (или критической массой). Критический размер реактора  [c.314]

Как видим, методы определения и расчета значений поверхностной энергии, имеющиеся в классической теории поверхностных явлений, весьма неопределенны и сопряжены со значительными трудностями Классический подход к иззщению поверхностей раздела и поверхностных явлений базируется на трактовке поверхностной энергии как меры недостатка энергии сцепления на моиомолекулярной поверхности, тогда как более реальным будет предположить, что существует некоторая переходная зона толщиной Д, в которой осуществляется специфическое фрактальное структурирование вещества материала при переходе из трех измерений в объеме в два измерения на поверхности. При этом по мере уменьщения значений фрактальной размерности структур вещества, заполняющего переходный слой, будет высвобождаться некоторое количество энергии. Интегральное значение энергии, содержащееся по толщине А поверхностного переходного слоя, является тем самым феноменом, носящим название поверхностной энергии. Таким образом объясняются повышенные значения поверхностной энергии, определяемые из эксперимента, по сравнению с вычисляемыми по правилу Стефана. Способностью активно поглощать и тем самым "запасать" энергию обладают именно фрактальные структуры, о чем уже говорилось в первой главе.  [c.115]


При этом оказывается, что наложение возмущения на потенциал V(r) приводит к отщеплению уровней от разрешенной зоны. Это иллюстрирует рис. 7.12. При июУго>0 уровень соответствующий потолку разрешенной зоны, поднимается вверх. Все остальные (М—1) уровней практически не изменяют своего положения. Если о ,о<0, то уровень минимальной энергии опускается вниз. Uq— среднее значение энергии возмущения в объеме 1/ -) Таким образом, в запрещенной зоне появляются разрешенные уровни л, обусловленные примесями или дефектами.  [c.236]

Течение в переходной области пограничного слоя аналогично течению в переходной области в трубах. Так, наблюдалось, что турбулентность возникает в ограниченных зонах в виде локальных турбулентных пятен, за пределами которых поток сохраняет ламинарную структуру. Турбулентные пятна распространяются вниз по течению и прив-адт к перемежаемости, аналогичной той, которая имеет место нг аереходных режимах в трубах. Наряду с этим на переходных у хтках происходит обмен жидкими объемами между внешним потоком и пограничным слоем через его внешнюю границу, что обусловливает другой тип перемежаемости.  [c.363]

Жидкий металл имеет больший объем, чем закристаллизовавшийся, поэто.му залитый в фор.му металл в процессе кристаллизации у.меньшается в объеме, что приводит к образованию пустот, называемых усадочными раковинами (4). Верхняя часть слитка с усадочной раковиной отрезается. В слитках небольших размеров зона (3) может отсутствовать. Кристатлизация, приводящая к стыку зон столбчатых кристаллов, называется транскристаллиза-цней.  [c.19]

В процессе эксплуатации на рабочую жидкость воздействуют положительные и отрицательные температуры (диапазон от -50 до +100°С), большие давления (до 32 МПа) в объеме жидкости, вь[сокие контактные давления в зоне зацепления шестеренных насосов и сферических соеди-ненргях аксиально-поршневых насосов, вибрация трубопроводов и гидрооборудования. Происходит многократная деформация (мятие) жидкости при прохождении ее через штуцера, тройники, щелевые зазоры и дроссели, особенно через острые кромки и заусенцы деталей гидроаппаратуры. Все это в конечном итоге вызывает химиче-  [c.142]

В упрощенном виде схема процесса изнашивания при фреттинг-коррозии показана на рис. 5.8. Первоначальное контактирование деталей происходит в отдельных точках поверхности (/). При вибрации окисные пленки в зоне фактического контакта разрушаются, образуются небольшие каверны, заполненные окисными пленками (//), которые постепенно увеличиваются в объеме и сливаются в одну большую каверну (///). В ней повышается давление окисленных частиц металла, образуются трещины. Некоторые трещины сливаются, и происходит откалывание отдел1)Ных объемов металла. При этом частицы окислов производят абразивное воздействие. В результате действия повышенного давления и сил трения частиц окислов повышается температура, происходит образование белых твердых не травя-1ЦНХСЯ структур в отколовшихся частицах н на поверхности каверн.  [c.141]

Наконец, при последующем увеличении давления во время кристаллизации усадочные раковины будут спрессовываться и уменьшаться в объеме, а усадочные поры исчезнут благодаря тому, что под давлением оставшаяся вверху жидкость лучше будет питать меж-дендритиые разреженные зоны через капиллярные каналы (рис. 21-, <3). Однако применяемые на практике давления пе позволяют полностью освободить металл от усадочных раковин, а только обеспечивают возможность концентрировать их в местах окончания затвердевания.  [c.56]

Неравномерность распределения те плов ого потока по периметру тепловыделяющего элемента (твэл) может возникать вследствие многих причин разностенности трубы, неравномерности распределения делящегося материала в объеме твэла, из-за неравномерности распределения нейтронного потока по радиусу активной зоны и др. Во всех указанных случаях отношение <7крГ7<7кр1 обычно не превышает 1,2. Значительная неравномерность тепловыделения по периметру возникает в твэлах сложной конфигурации с тепловыделяющими ребрами, в основаниях которых наблюдаются повышенные плотности теплового потока. При этом в зависимости от относительных размеров твэла значение 1Якр1 может достигать 2—3 [143].  [c.304]

Ширина запрещенной зоны не является абсолютно постоянной, а подвержена флуктуациям, так как тепловые колебания решетки приводят к колебаниям мгновенной локальной плотности в объеме кристалла и, следовательно, к изменению мгновенных расстояний между атомами, от которых она зависит. Фотон энергией hv < W, тоглощенный в том месте объема кристалла, где мгновенная ширина иапрещенной зоны меньше средней, возбуждает пару электрон —  [c.245]


Смотреть страницы где упоминается термин Зоны в объеме : [c.133]    [c.53]    [c.78]    [c.79]    [c.81]    [c.172]    [c.294]    [c.91]    [c.138]    [c.295]    [c.30]    [c.191]    [c.261]    [c.117]    [c.118]   
Смотреть главы в:

Archicad10  -> Зоны в объеме



ПОИСК



Объемы тел

Тепловое напряжение зоны активного объема топки



© 2025 Mash-xxl.info Реклама на сайте