Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон (теорема) движения центра масс

В случаях, когда имеет место закон сохранения движения центра масс, теорема позволяет по перемеш,ению одной части системы найти перемещение другой ее части.  [c.278]

Следствия из теоремы о движении центра масс системы выражают закон сохранения движения центра масс системы.  [c.120]

Теорема о движении центра масс -всегда применяется при исследовании движения центра масс системы. Методика решения задач в этом случае не отличается от той, которую мы применяли в динамике материальной точки. Теорема с успехом может заменить во многих случаях теорему об изменении количества движения системы. Ее особенно удобно применять в тех случаях, когда выполняется закон сохранения движения центра масс. При решении задач с использованием данной теоремы рекомендуется следующая последовательность действий.  [c.185]


Если нри составлении уравнений теоремы (п. 4) выяснится, что выполняется закон сохранения движения центра масс и, кроме того, начальная скорость центра  [c.185]

Закон сохранения движения центра масс. Из теоремы о движении центра масс можно получить следующие важные следствия.  [c.344]

Теорема дает обоснование методам динамики точки. Из уравнений (16 ) видно, что решения, которые мы получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела, т. е. имеют вполне конкретный смысл.  [c.275]

Теорема позволяет при определении закона движения центра масс любой системы исключать из рассмотрения все наперед неизвестные внутренние силы. В этом состоит ее практическая ценность.  [c.276]

Пользуясь теоремой о движении центра масс, можно, зная внешние силы, найти закон движения центра масс, и, наоборот, зная движение центра масс, определить главный вектор действующих  [c.277]

Уравнение (42.32) аналогично второму закону Ньютона и составляет содержание теоремы о движении центра масс системы центр масс механической системы движется как материальная точка. Масса этой точки равна сумме масс всех точек, составляющих механическую систему, и сила, на нее действующая, представляет собой главный вектор всех внешних сил, действующих на систему.  [c.59]

Глубокий общетеоретический смысл теоремы о движении центра масс заключается в том, что под материальной точкой в теоретической механике можно понимать центр масс механической системы, движение которого описывается законами Ньютона.  [c.60]

Используя теоремы о движении центра масс и кинетическом моменте относительно центра масс, законы сохранения (46.22) и  [c.71]

Из теоремы о движении центра масс можно получить следствия, аналогичные законам сохранения количества движения и проекции количества движения на ось  [c.264]

Теорема о движении центра масс объясняет явление отдачи при стрельбе, закон движения центра масс шрапнели, разорвавшейся в пустоте, и др.  [c.148]

Теорема о движении центра масс. В ряде случаев для определения характера движения системы (особенно твердого тела), достаточно знать закон движения ее центра масс. Чтобы найти этот закон, обратимся к уравнениям движения системы (13) и сложим почленно их левые и правые части. Тогда получим  [c.343]


Решение задач. Пользуясь теоремой о движении центра масс, МОЖНО, зная внешние силы, найти закон движения центра масс, и наоборот, зная движение центра масс, определить главный вектор действующих на систему внешних сил. Первой задачей  [c.346]

Решение. Связи, наложенные на систему, допускают в каждый момент времени поступательное перемещение всей системы в любом направлении горизонтальной плоскости. Следовательно, для любого горизонтального направления имеет место теорема о движении центра масс. Силы же тяжести, действующие на систему (единственные внешние активные силы), не дают проекций на горизонтальную плоскость. Поэтому будем иметь возможность применить закон сохранения количества движения для любых постоянных горизонтальных направлений, а центр масс в плоскости Ох у будет двигаться равномерно и прямолинейно  [c.322]

Циклические интегралы являются некоторым обобщением основных теорем динамики системы (закона о сохранении движения центра масс и теоремы площадей). Рассматривая теорему с движении центра масс, заметим, что она имеет место, когда связи допускают поступательное перемещение всей системы. Пусть среди возможных перемещений системы имеется такое поступательное перемещение вдоль неподвижной оси х. Соответствующую этом> перемещению лагранжеву координату обозначим через Определяя возможные перемещения через независимые координаты Лагранжа, будем иметь  [c.352]

ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА И ТЕОРЕМА ОБ ИЗМЕНЕНИИ ИМПУЛЬСА И ДВИЖЕНИИ ЦЕНТРА МАСС  [c.59]

Уравнения движения механических систем, в которые не входят внутренние силы роль этих уравнений в механике. Теорема о количестве движения и следствия из нее теорема импульсов и теорема о движении центра масс си- стемы. Закон сохранения импульса как первый интеграл уравнений движения системы.  [c.59]

Какова роль теоремы о моменте импульса в механике системы и твердого тела 2. Когда выполняется закон сохранения момента импульса 3. Каково значение теорем о движении центра масс и момента импульса относительно центра масс в исследовании движения системы В чем состоит принцип затвердевания  [c.77]

Изложенная теорема и представляет общий закон движения центра масс. Он был найден Даламбером и изложен в его Динамике — сочинении, в котором впервые была построена динамика системы ).  [c.161]

Эта теорема выражает закон движения центра масс системы. Проектируя уравнение (59) на неподвижные оси декартовых координат, будем иметь  [c.375]

Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

Закон (теорема) о движении центра масс  [c.38]

Это уравнение движения центра масс, действительно имеющее вид второго закона Ньютона, называют законом (теоремой) о движении центра масс центр масс системы материальных точек движется как материальная точка, в которой  [c.40]


Поскольку все точки тела движутся одинаково, поступательное движение вполне описывается кинематическим законом движения одной произвольной точки тела, и, следовательно, тело, могущее совершать только поступательное движение, обладает тремя степенями свободы. Но уравнение движения одной замечательной точки тела -его центра масс - известно оно дается теоремой о движении центра масс (12.5). (Еще раз подчеркнем, что законы, доказанные для произвольной системы материальных точек, справедливы и для твердого тела как частного случая такой системы)  [c.61]

При изучении движения механич. систем часто применяют т. н. общие теоремы Д., к-рые также могут быть получены как следствия второго и третьего законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения, момента количеств движения и кинетич. энергии системы. Иной путь решения задач Д. связан с использованием вместо второго закона Д. принципов механики (см. Д Аламбера принцип, Д Аламбера — Лагранжа принцип. Вариационные принципы механики) и получаемых с их помощью ур-ний движения, в частности Лагранжа уравнений механики.  [c.159]

Рассмотренные следствия из теоремы называют законом сохранения кинетического момента механической системы в относительном движении по отношению к центру масс.  [c.231]

Следствия из законов Кеплера. Во всем последующем изложении речь будет идти только о движении центра тяжести планет. Согласно теореме, которую мы докажем впоследствии, центр тяжести движется, как точка, в которой сосредоточена вся масса планеты и в которую перенесены параллельно самим себе все приложенные к планете силы.  [c.335]

Теорема о движении центра масс. Дифференциальные уравпе-иня движения механической системы. Теорема о движении центра масс механической системы. Закон сохранення движення центра масс.  [c.9]

Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]

Из теоремы вытекает закон сохранения количества движения если геом. сумма всех действующих на систему внеш. сил равна нулю, то количество движения системы остаётся всё время величиной постоянной. Теорема применяется при изучении движения жидкостей, в теории удара, в теории реактивного движения и др. Следствием этой теоремы является также теорема о движении центра масс центр масс механич. системы движется как материальная точка, масса к-рой равна массе системы и на к-рую действуют все внеш. силы, приложенные к системе,  [c.617]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Как следует из обобщенной теоремы площадей Чаплыгина (см. 1 гл. II), вектор момента количеств движения системы относительно точки опоры А постоянен. Убедимся в этом непосредственно. Обозначим через вектор длиною Срсо, направленный по оси гироскопа, и через Ьх, Ьуу — его проекции на оси координат. Пусть X и У — проекции на оси Ах и Ау силы трения (реакции идеальной неголономной связи), развивающейся в точке А опоры гироскопического шара о плоскость. Напишем уравнения движения центра масс и закон изменения момента количеств движения системы относительно центра масс в проекциях на оси координат Ахуг  [c.69]


Указания. Задача Д5 на применение теорем о движении центра масс и об изменении количества движения системы. Первой теоремой удобнее пользоваться, когда надо найти перемещение (или закон движения) 0ДН010 из тел системы, движущегося поступательно, а второй — когда надо найти скорость такого тела. При определении ускорения тела или реакции связи тоже удобнее воспользоваться первой теоремой.  [c.67]

В инерциальных СО, как было показано в предыдущих главах, законы изменения и сохранения импульса, момента импульса и механической энергии, теорема о движении центра масс, а также уравнение вращательного движения твердого тела вытекают как следствие из второго и третьего законов Ньютона. Поскольку второй закон Ньютона выполняется и в неинерциальных СО с учетом возникновения д0П01Шительных сил инерщги, то упомянутые выше законы должны вьтолняться и в неинерциальных СО, если в этих законах наряду с силами взаимодействия учесть силы инерции. Прч этом, естественно, все силы инерции должны рассматриваться как внешние, так как они не удовлетворяют третьему закону Ньютона.  [c.105]

Можно было бы назвать действием произведение массы на скорость или на ее квадрат, или на некоторую функцию пространства и времени пространство и время суть два единственных объекта, которые мы ясно видим в движении тел можно делать сколько угодно математических комбинаций из этих двух вещей, и все это можно назвать действием но первоначальное и метафизическое понятие слова действие не будет от этого яснее. Вообще все теоремы о действии, определенном как угодно, о сохранении живых сил, о покое или равномерном движении центра тяжести и о прочих подобных законах суть не больше, как более или менее общие математические теоремы, а не философские принципы. Например, когда из двух тел, прикрепленных к рычагу, одно опускается, а другое поднимается, находят, если угодно, как г. Кёниг, что сумма живых сил равна нулю, ибо складывают с противоположными знаками количества, имеющие противоположные направления. Но это есть положение геометрии, а не истина метафизики, потому что, в сущности, эти живые силы, имея противоположные направления, вполне реальны, и можно было бы при другом направлении отрицать равенство суммы этих сил нулю. Дело обстоит так, словно утверждали бы, что в системе тел вовсе нет движения, когда количества движений равны и противоположны по знаку, хотя и реальны.  [c.115]

Эта теорема справедлива также для движения системы относительно осей, перемещающихся поступательно вместе с центром масс. И.ч теоремы вытекает закон сохранения гл. момента количеств движения если сумма моментов внеш. сил относительно данного центра (пли оси) равна пулю, то гл. момент количеств движения системы относительно этого центра (или оси) остаётся всё время величиной постоянной. Теорема применяется при изучении движения твёрдого тела, в частности в теории гироскопов, в теории удара, при н. ученли движения планет, в теории турбин.  [c.617]


Смотреть страницы где упоминается термин Закон (теорема) движения центра масс : [c.240]    [c.291]    [c.224]    [c.240]    [c.161]    [c.79]   
Смотреть главы в:

Механика  -> Закон (теорема) движения центра масс



ПОИСК



Движение центра масс

Движения масса

Закон движения

Закон движения движения центра масс

Закон движения центра масс

Закон массы

Закон сохранения импульса и теорема об изменении импульса и движении центра масс

Масса центру масс

Теорема движения

Теорема о движении центра мас

Теорема о движении центра масс

Центр масс



© 2025 Mash-xxl.info Реклама на сайте