Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы конечных элементов для оболочек

МЕТОДЫ КОНЕЧНЫХ ЭЛЕМЕНТОВ ДЛЯ ОБОЛОЧЕК  [c.412]

Гл. 8. Методы конечных элементов для оболочек  [c.414]

В результате анализа процессов штамповки в режиме сверхпластичности с использованием вышеуказанных методов возможно определить технологические параметры процессов, скоростные условия в очаге деформаций и влияние на поле скоростей основных факторов, сопровождающих эти процессы. Применение метода конечных элементов для моделирования процессов штамповки позволит получить универсальную методику определения технологических параметров изготовления тонкостенных оболочек различных степеней сложности.  [c.404]


Описание и анализ сходимости методов конечных элементов для арок и оболочек, включая анализ аппроксимации геометрии криволинейными и плоскими элементами (гл. 8).  [c.8]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Если при рассмотрении двумерных (пластины и оболочки) или трехмерных (массивы) объектов континуальная информация о напряжениях и перемещениях на контуре (поверхности) элемента конечных размеров такой системы за счет упрощающих предположений сводится к дискретной, то в принципе подход к анализу системы ничем не отличается от анализа стержневой системы. В таком случае континуальный объект представляется дискретной расчетной схемой и алгоритм анализа напряженно-деформированного состояния ее полностью остается идентичным алгоритму для стержневой системы. На таком подходе основан так называемый метод конечных элементов.  [c.555]

Развитие вычислительной техники позволило получать численные решения уравнений теории оболочек. Для оболочек вращения естественным является представление решения в форме тригонометрических рядов по угловой координате и численное интегри- рование-уравнений для каждого члена ряда. Соответствующие уравнения выписаны в 26. Для оболочек произвольной конфигурации все большее применение находит в последнее время метод конечных элементов.  [c.259]

Рассмотрим тонкую многослойную оболочку вращения, выполненную из КМ, при действии осесимметричных нагрузок. Получим основные исходные матрицы для решения методом конечных элементов физически и геометрически нелинейной задачи деформирования такой оболочки. Воспользуемся шаговым методом нагружения, интегрирование будем проводить по предыдущей равновесной конфигурации (см. 3.7).  [c.182]


Большие вырезы в палубах, надстройки, фундаменты под главные и вспомогательные механизмы, различные подкрепления, выгородки и шахты приводят к значительной неоднородности и сложности конструкции, для исчерпывающего анализа которой необходимо применять численные методы типа метода конечных элементов [8, 13]. Наряду с этим в судостроении широко используют приближенные методы динамических расчетов, в которых судовые конструкции представляют как балки, рамы, изотропные и ортотропные пластины и цилиндрические оболочки. В основе приближенных схем расчета судовых конструкций лежит допущение о возможности независимого определения при статической нагрузке так называемых общих деформаций корпуса и местных деформаций его элементов — перекрытий, поперечных рам, отдельных балок набора, пластин обшивки. При этом под общими понимают деформации, соответствующие балочным формам смещений корпуса в целом, происходя-  [c.434]

Расчет пологих оболочек имеет много общего с расчетом пластин и решением плоской задачи. Для определения сил и перемещений применяют методы двойных и ординарных тригонометрических рядов, численные методы конечных разностей и конечных элементов. Для сферической оболочки Ry=R2=  [c.157]

Разработанные метод и программа позволяют решать сложные инженерные задачи расчета напряженного состояния в корпусах энергетических установок и в сосудах под давлением, имеющих разъемные фланцевые соединения, при эксплуатационных силовых и температурных режимах работы с учетом различных типовых особенностей этих конструкций. Метод и программа удобны для расчета оболочечных конструкций сложной формы с нелинейным распределением поверхностной нагрузки (примеры 1—5), для которых данный метод представляет собой вариант метода конечных элементов, использующий известные решения теории оболочек и пластин. Представление сложных участков оболочек совокупностью 8—  [c.98]

Таким образом, допустимо при расчете, как это рекомендуется в нормах [4], рассматривать узел соединения патрубка с примыкающей частью корпуса как осесимметричную составную конструкцию из оболочки переменной формы, сопряженной с пластиной постоянной толщины. При правильном учете переменной толщины стенки патрубка и радиусного перехода к пластине напряженное состояние в нем от силовых нагрузок может быть достаточно точно определено методом конечных элементов с использованием формул теории тонких оболочек и пластин [5]. Однако, так как основание патрубка выполнено из углеродистой стали, а приваренная к основанию втулка — из нержавеющей стали, имеющих различные коэффициенты теплового расширения, в зоне сварного шва возникает объемное термоупругое напряженное состояние, которое должно определяться методами теории упругости или экспериментально. Для этой цели при осесимметричном температурном поле наиболее удобен метод механического моделирования термоупругих напряжений по заданному температурному полю [6].  [c.127]

Построена и изучена с точки зрения стационарности и экстремальности система полных и частных функционалов в случае разрывных полей перемещений, деформаций, напряжений и функций напряжений некоторые вариационные принципы для таких полей впервые рассматривались В. Прагером [0.12]. Аналогичные вопросы рассмотрены и в теории оболочек. Необходимость рассматривать разрывные поля в качестве возможных состояний упругого тела возникает иногда при численном решении задач, в частности при использовании метода конечных элементов.  [c.10]

Сравнение расчетов с экспериментами. В работе [31] для определения деформаций и напряжений во фланцевом соединении сосудов без нажимных колец использовались также два расчетных метода. Приближенный метод осуществлялся путем разбиения фланцевого соединения на базисные элементы - кольца, оболочки, балки. Поперечные силы и моменты в местах их соединений определялись из уравнений равновесия и совместности деформаций. Второй подход использует метод конечных элементов, для чего применялась программа MAR для ЭВМ /5Л/-370. Наличие в программе специальных люфтовых элементов позволяет моделировать нелинейную контактную задачу, связанную с локальным смыканием и (или) раскрытием зазора между поверхностями фланцев и проклад-  [c.153]


Расчеты по методу конечных элементов для упругой модели материала находятся в хорошем соответствии с расчетами для упругопластического материала. Следовательно, общая де< рмация фланца слабо зависит от локальной пластической деформации поверхностей прокладки. Несмотря на очевидное общее преимущество расчетов на основе метода конечных элементов, они не дают существенно лучшего согласия с экспериментом по сравнению с приближенным методом расчета по теории оболочек и колец. В частности, эти методы дают близкие значения средних поворотов нижнего и верхнего фланцев, удовлетворительно согласующиеся с экспериментальными данными. При расчете на внутреннее давление приближенный расчет неплохо описьгаает экспериментальные результаты по относительному проскальзьшанию колец и хуже — по радиальному смещению.  [c.154]

Для рассматриваемой в этом примере замкнутой оболочки граничные условия в полюсе, т. е. в точке О на рис. 4, требуют особого рассмотрения. В некоторых решениях по методу конечных элементов для этой области оболочки применяется специальный плоский элемент. Другие авторы, например Сен и Гоулд [8], используют специальные элементы — шапочки . В излагаемом здесь подходе используется обычный элемент. Однако некоторые члены, входящие в выбранные для решения задачи выражения перемещений и обобщенных усилий, и члены соответствующих уравнений содержат величину 1/г, и их нельзя вычислить в полюсе. Тем не менее граничные условия в полюсе могут непосредственно дать достаточную информацию о константах, входящих в функции формы.  [c.118]

Однако решения методом конечных элементов для сплошных конструкций, таких, как тонкая пластина, изображенная на рис. 2.4 (е), пространственное деформируемое тело, изгибаемая пластина и оболочка, не являются точными. Для иллюстрации этого утверждения предположим, что треугольные элементы, изображенные на рис. 2.4 (ё), построены в предположении, что для поля перемещений вдоль сторон элемента имеет место квадратичный закон распределения. На рис. 2.5(а) изображено деформированное состояние двух выбранных элементов. Если соединить элементы, как указано выше, то, вообще говоря, будет нарушена непрерывность перемещений вдоль линии, соединяющей два элемента (см. рис. 2.5 (Ь)). Соединения в вершинах элементов обеспечивают непрерывность только в этих точках. Квадратичная функция однозначно определяется по трем точкам, а так как только две концевые точки соприкасающихся сторон участвуют в определении формы смещений вдоль ребра, перемещения краев элементов будут различаться, за исключением некоторых частных случаев. Если псполь-зовать большее количество элементов, как указано на рис. 2.5(с), то различие в смещениях на сторонах соседних элементов станет меньше и вызванная указанным обстоятельством погрешность решения также уменьшится. Эта ошибка конечна для любого конечного числа элементов, поэтому решение является приближенным.  [c.43]

В свете предшествующего анализа мы будем говорить что метод конечных элементов для решения задачи об оболочке конформен, если он конформен как для перемещения, так и для геометрии в рассмотренном в этом разделе смысле Как следствие метод конечных элементов для решения задачи об оболочке будет называться неконформным, если он неконформен в прел шествующем смысле.  [c.436]

Конечные элементы могут быть построены различной формы, для различных видов деформации (плоская задача, изгиб пластин, деформации элемента оболочки, стержня и т. д.). Каждый из элементов характеризуется его матрицей жесткости R. Если они построены, то метод конечных элементов позиоляет по изложенной схеме создавать любые композиции (ансамбли) из различных конечных элементов. Причем определение деформированного состояния такой композиции или ансамбля (приближенно заменяющего реальную конструкцию) сводится к составлению и решению системы линейных алгебраических уравнений типа (8.71). В настоящее время существуют автоматизированные комплексы программ, позволяющие рассчитывать по методу конечных элементов очень сложные конструкции с числом неизвестных перемещений, соствляющим тысячи или даже десятки тысяч единиц. Он успешно также применяется в решении нелинейных задач и задач динамики деформируемых систем.  [c.263]

Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]

Все большее применение при проектировании н аходят композиционные материалы большой толщины, для которых не выполняется предположение о плоском напряженном состоянии. При введении общего, шестимерного пространства напряжений требуются более сложные методы исследования, основанные на уточненных теориях пластин и оболочек, учитывающих трансверсальные касательные и нормальные напряжения, теории упругости, методе конечных элементов (см. табл. 1, п. 1). Соответственно необходим и более общий критерий разрушения.  [c.93]

Методом конечного элемента можно непосредственно рассчитывать участки оболочки со шлюзом. В качестве примера на рис. 1.28 и 1.29 показано распределение усилий по вертикальному и горизонтальному сечениям в оболочке, проходящим через ось шлюза, от продольных сил преднапряжения сооружения 10 000 кН/м (интенсивность обжатия бетона — 8,33 МПа) и его кольцевого обжатия внешним давлением 5,2 МПа. В расчете рассматривалась цилиндрическая оболочка с радиусом срединной поверхности, равным 23,1 м, толщиной стенки 1,2 м, увеличенной в зоне шлюза диаметром 3 до 2 м. При определении в вертикальном сечении усилий Оу, направленных перпендикулярно к направлению нагрузки, рассматривались три варианта решения оболочки без утолщения у шлюза с утолщением, расположенным симметрично срединной поверхности с утолщением с внешней стороны. При отсутствии утолщения максимальные растягивающие напряжения, действующие перпендикулярно к нагрузке, равны интенсивности обжатия, рис. 1.29, а при увеличении толщины оболочки симметрично с двух сторон максимальные напряжения растяжения (Ту соответственно снизились при размещении утолщения с наружной стороны максимальные растягивающие напряжения сгу, действовавшие по центру утолщения, составляли 6,8 МПа, т. е. уменьшились по сравнению с напряжениями для оболочки без утолщения незначительно. Усилия в направлении нагрузки по этому сечению при симметричном и несимметричном размещениях утолщения были близки между собой. Характер распределения в вертикальном сечении моментов, действующих в вертикальном направлении, соответствует моментам при внецентренном сопряжении двух цилиндрических оболочек. Из рисунка видно также, что концентрация максимальных сжимающих напряжений, действующих по горизонтальному сечению в направлении нагрузки, вследствие утолщений снизилась в два раза.  [c.49]


Программа расчета трубы методом конечного элемента разработана в отделе автоматизации строительного проектирования НИИАСС Госстроя СССР. При этом трубу рассчитывали как стержневую консоль и как пространственную систему. В последнем случае в качестве конечного элемента взят прямоугольный плоский элемент оболочки. Для расчетной схемы с учетом прямой и косой плоскостей симметрии выбрана половина окружности трубы от ф = 0 до <р = л, которая разбита на 14 частей. По высоте разбиение проведено с переменным шагом. У основании высота одного ряда элементов принята равной 5 м, затем расположены два ряда по 10 м, далее 14 рядов по 20 м, высота последнего ряда 10 м. Нижний край трубы жестко защемлен, верхний — свободен. Толщина пластин постоянна в пределах одного яруса и равна толщине трубы в центре пластин данного яруса. Координаты узлов определены из геометрии и находятся на ее  [c.289]

Применение устойчивых численных методов решения этих систем на ЭВМ позволяет применять в расчетных схемах весьма большое число элементов. Имеется возможность с высокой точностью аппроксимировать элементы переменной толщины набором однотипных базисных элементов постоянной или линейно-переменной толиданы, например тороидальные и эллиптические оболочки могут быть представлены набором конических и цилиндрических оболочек и кольцевых пластин. Такой подход соответствует варианту метода конечных элементов, в котором в качестве функций для перемещений конечных элементов используются вместо полиномов известные аналитические решения теории оболочек и пластин, что позволяет выбирать более крупные элементы и снижает погрешность расчета конструкции.  [c.46]

В последние годы численные исследования ползучести оболочек проводятся также методом конечных элементов [89, 94]. Однако для задач осесимметричногс деформирования оболочек рациональнее использовать метод Ритца, применяемый на основе вариационных уравнений смешанного типа, так как напряженно-деформированное состояние оболочек может быть описано достаточно точно относительно небольшим числом координатных функций.  [c.12]

В последние годы для анализа напрнжений и деформаций в атомных реакторах интенсивно развиваются вычислительные методы с использованием ЭВМ [4, 7, 11 и др.]. Это в первую очередь относится к матричному методу теории пластин и оболочек, методу конечных элементов (МКЭ), методу конечных разностей (МКР). Первый из указанных методов позволяет достаточно точно и быстро рассматривать корпусные осесимметричные конструкции (зоны фланцев, днищ, крышек, нажимных колец) с широкой вариацией условий механического и теплового нагружения и выходом в неупругую область деформаций. Метод конечных разностей использовался для решения контактных задач в области главного разъема корпусов ВВЭР. Наибольшее распространение в инженерной практике в СССР и за рубежом получает метод конечных элементов. Этот метод является достаточно универсальным как для зон с относительно невысокой неоднородностью термомеханических напряжений, так и для зон с высокой концентрацией напряжений (в том числе щелевые сварные швы и дефекты типа трещин). В методе конечных элементов получает отражение одновременное решение тепловой задачи и задачи о напряженно-деформированном состоянии. Наиболее эффективно применение МКЭ для плоского и осесимметричного случая, когда в расчет может быть введена неоднородность механических свойств и стадия неупругого деформирования. Решение трехмерных задач методом конечных элементов сводится в основном к анализу пространственных относительно тонкостенных конструкций, а также к рассмотрению объемных напряженных состояний в ограниченных по размерам зонах (например, зона присоединения толстостенного патрубка к толстостенному корпусу).  [c.42]

Будучи по своей природе вариационным, метод конечных элементов хорошо приспособлен для решения двумерных и трехмерных задач прикладной механики со сложными граничными условиями. В СССР благодаря работам А. Ф. Смирнова, А. Р. Ржа-ницына, А. П. Филина, Л. А. Розина, А. В. Александрова, Б. Я. Лащеникова, Н. Н. Шапошникова, В. А. Постнова, В. Г. Корнеева и ряда других авторов этот метод получил четкое математическое обоснование и стал признанным инструментом в расчетах сооружений, в том числе таких элементов транспортных сооружений, как плиты, балки-стенки, оболочки, многослойная проезжая часть или грунтовые массивы, взаимодействующие с конструкциями.  [c.3]

Пример. 2. Гаптельное сопряжение цилиндрических оболочек с радиусным переходом (рис. 5). Этот пример рассмотрен в работе [И], где приведены полученные методом конечных элементов эпюры меридиональных и кольцевых напряжений для ступенчатого цилиндра под внутренним давлением. При расчете по программе зона галтели была заменена ступенчатой оболочкой из шести элементов в сопряжениях со скачками средних радиусов задавались разрывы изгибающих моментов, вызванные осевым растяжением.  [c.96]

Пример 3. Галтельное сопряжение цилиндрических оболочек без радиусного перехода (рис. 6). Такие сопряжения рассмотрены в работе [13], где для ряда соотношений размеров приведены ползгченные методом конечных элементов коэффициенты концентрации в угловой точке ступенчатого сопряжения. Там же для двух вариантов оболочек — с наружной и внутренней галтелями — приведены эпюры меридиональных и кольцевых напряжений на обеих поверхностях и дано их сравнение с решением по теории оболочек и экспериментальными данными. Здесь рассмотрена оболочка с внутренней галтелью, так как для нее в работе [13], показано хорошее совпадение данных  [c.96]

С точки зрения практических приложений исследование иесквоз-ной трещины, находящейся в конструкционном элементе, который можно представить пластиной или оболочкой, является одной из наиболее важных задач механики разрушения. В самом общем случае эта задача сводится к задаче о трехмерной трещине, развивающейся в теле конечных размеров, где поле напряжений, возмущенное трещиной, испытывает сильное влияние границ твердого тела. В настоящее время точное решение подобной задачи даже в случае линейно-упругих твердых тел представляется весьма сложным. В связи с этим, как показано Б книге, для решения задачи используются разнообразные численные методы, в частности метод конечных элементов. Возобновившийся в последние годы интерес к так называемой модели в виде линейных пружин (стержневой модели трещины), впервые описанной в [1], частично объясняется желанием получить более простое и менее дорогое решение задачи о несквозной трещине, а частично тем обстоятельством, что для некоторых и весьма важных конфигураций трещин эта модель приводит к результатам, обладающим приемлемым уровнем точности.  [c.243]

Формулировку вариационных принципов этой теории, так же как и теории упругости для сплошного тела (см. гл. 3, 6), можно обобщить, рассматривая в качестве варьируемых переменных разрывные поля перемещений, деформаций, усилий и функций напряжений. Вариационные принципы при разрывных полях параметров напряженно-деформированного состояния могут служить для построения алгоритмов расчета оболочек, в частности при использовании метода Ритца и метода конечных элементов, а также для решения некоторых контактных задач.  [c.132]



Смотреть страницы где упоминается термин Методы конечных элементов для оболочек : [c.274]    [c.413]    [c.254]    [c.451]    [c.48]    [c.230]    [c.239]    [c.98]    [c.83]    [c.249]   
Смотреть главы в:

Метод конечных элементов для эллиптических задач  -> Методы конечных элементов для оболочек



ПОИСК



Конечный элемент

Конформные методы конечных элементов для оболочек

Метод конечных элементов

Метод конечных элементов в перемещениях для расчета оболочек произвольной формы

Приложение метода конечных элементов к расчету авиационных конструкций Конструкции в виде пластин и оболочек Предварительные замечания

Сатклифф Расчет оболочек, методом коллокаций с использованием конечных элементов



© 2025 Mash-xxl.info Реклама на сайте