Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стабильность металлических структур

Стабильность металлических структур  [c.490]

Капельная эрозия — это процесс, протекающий во времени. Если некоторую поверхность тщательно отшлифовать и отполировать, а затем подвергнуть бомбардировке одинаковыми каплями диаметра d , имеющими скорость w , то характер поверхности будет непрерывно изменяться. Длительное время никаких изменений замечаться не будет, а затем на поверхности появятся следы наклепа (поверхностного упрочнения) поверхность приобретет как бы пятнистую структуру, похожую на ту, которая возникает на металлической поверхности под многочисленными сравнительно несильными ударами молотка. Затем на поверхности начнут появляться многочисленные трещины увеличивающегося размера и отрыв частиц металла. По современным представлениям этому во многом будет способствовать растекание капли с большой скоростью, после ее удара о поверхность и прилипания. Со временем поверхность приобретает стабильную горную структуру.  [c.457]


Доказано, что в результате образования непрерывных и ограниченных твердых растворов термически стабильных соединений повышается прочность межатомной связи этих фаз. В результате образования гетерогенных структур с мелкодисперсным выделением избыточных фаз из пересыщенных твердых растворов создаются дополнительные условия для упрочнения сплавов. Эти факторы, повышающие жаропрочность металлов, объясняют то, что на диаграммах состав - жаропрочность при определенных интервалах температур наблюдаются максимальные значения жаропрочности. Эти максимальные значения в металлических системах расположены вблизи границы предельного насыщения.  [c.47]

В настоящем обзоре делается попытка всесторонне осветить современное состояние вопроса о роли поверхности раздела в упругопластическом поведении композитов с металлической матрицей. Волокнистые композиты и композиты, изготовленные направленной кристаллизацией, рассматриваются с точки зрения очевидных различий в структуре и стабильности их поверхностей раздела. Особое внимание уделено структуре и стабильности поверхности раздела и ее роли при различных видах нагружения, т. е. растяжении, сжатии, ползучести и усталости. Как будет показано ниже, детали поведения поверхности раздела и ее роль стали проясняться с началом применения сканирующей электронной микроскопии, а также в результате эффективного использования электронной микроскопии на просвет и оптической металлографии совместно с рентгеновским микроанализом.  [c.233]

Для оценки влияния поверхности раздела на механические свойства рассмотрены результаты аналитических и экспериментальных исследований композитов с металлической матрицей. Для конструкционных композитных материалов наиболее важными являются следующие свойства модуль упругости, пределы текучести и прочности, характеристики микродеформации, ползучести и усталости. Поверхность раздела наиболее полно определяют структура, стабильность и прочность связи. Для оценки прочности связи и эффективности передачи нагрузки полезно простое правило смеси при этом необходимо, однако, учитывать все допущения и ограничения такого подхода.  [c.263]

В производственной практике чаще всего наблюдаются случаи, когда эвтек-тоидное превращение протекает частично в стабильной и частично в метастабильной системах. Получающийся перлито-ферритный чугун обладает свойствами, приближающимися к свойствам перлитного или ферритного серого чугуна в зависимости от процентного содержания феррита и перлита в структуре металлической основы.  [c.9]


Относительно высокая жаростойкость кремнистого чугуна объясняется влиянием кремния на формирование структуры металлической основы чугуна и образование защитной окисной пленки на поверхности изделий. Структура кремнистого чугуна с пластинчатым графитом не претерпевает изменений приблизительно до 900° С [27, 28]. У чугуна с более высоким содержанием кремния стабильность структуры сохраняется вплоть до температуры плавления. Кремний, содержащийся в чугуне в количестве 5—6%, способствует образованию окислов типа шпинели с плотно-упакованной кристаллической решеткой, предохраняющей металл от диффузионного окисления, о чем свидетельствуют данные рентгеноструктурного анализа окалины кремнистого чугуна, приведенные в табл. 49.  [c.208]

В связи с этим большое количество работ, выполненных за последнее время, было посвящено разработке таких технологий нанесения покрытий, которые позволяли бы получать менее чувствительную к деформации структуру керамического слоя и более стабильный, имеющий хорошие механические свойства слой металлического связующего покрытия, обладающего повышенной стойкостью в агрессивной окружающей среде. Это может быть достигнуто более жестким контролем за фазовой структурой свеженанесенного покрытия или же намеренным введением дефектов в покрытие во время его нанесения. Как было показано, фазовый состав свеженанесенного покрытия, от которого зависит работоспособность верхнего слоя, весьма чувствителен к составу и структуре исходного порошка [35], а также к изменениям параметров процесса плазменного напыления (температура подложки, расстояние от пушки до рабочего тела и т.п.). Введение дефектов в керамический слой осуществляется при строгом контроле за этими параметрами, что необходимо для получения требуемой пористости и/или желательного развития микротрещин в осаждаемом слое [36]. Определенную пользу в получении необходимой дефектной структуры приносят также некоторые технологические операции, проводимые уже после осаждения покрытия, в том числе отжиг и закалка [37].  [c.119]

В чугуне с вермикулярным графитом графит имеет червеобразную извилистую форму (рис. 4.45) с равномерным его расположением и стабильными размерами графитовых включений по сравнению с графитовыми включениями в сером чугуне. Особенностью структуры этого чугуна является наличие в металлической основе значительного (до 70. .. 90) количества феррита.  [c.200]

Структура серого (литейного) чугуна состоит из металлической основы с вкрапленным в нее графитом пластинчатой формы. Такая структура образуется непосредственно при кристаллизации чугуна в отливке в соответствии с диаграммой состояния системы Fe — С (стабильной). Причем чем больше углерода и кремния в сплаве и чем ниже скорость его охлаждения, тем выше вероятность кристаллизации по этой диаграмме с образованием графитной эвтектики. При низком содержании углерода и кремния чугун модифицируют небольшими дозами некоторых элементов (например, алюминия, кальция, церия).  [c.189]

Большинство используемых в технике металлических материалов являются многофазными. Поскольку растворимость компонентов один в другом с температурой меняется, в этих материалах во время термоциклирования происходят процессы растворения и выделения фаз, вследствие чего структура, свойства и размеры тел испытывают изменения. На развитие процессов растворения и выделения фаз влияют и термические напряжения, возникающие при интенсивных сменах температуры тела, и дефекты атомно-кристаллического строения. В многокомпонентных сплавах термо-циклирование сопряжено с перераспределением компонентов между фазами, формированием метастабильных и стабильных состояний.  [c.79]

Разработка физико-химических основ получения аморфных металлических сплавов требует развития теории образования структур в сугубо неравновесных условиях, что должно способствовать решению проблемы повышения стабильности сплавов в аморфном состоянии и увеличения размеров полуфабрикатов из таких сплавов. Это позволит более широко использовать в технике аморфные сплавы, обладающие уникальным комплексом свойств.  [c.272]


Результаты исследования (табл. 102) показывают, что эффективность поверхностной закалки серого чугуна определяется в основном его первичной структурой. Немалую роль играет и металлическая основа чугуна. Процесс поверхностной закалки становится более стабильным при перлитной основе с содержанием связанного углерода не менее 0,5%.  [c.255]

Для приготовления сплавов пользовались методами порошковой металлургии, основанными или на сухом механическом перемешивании тонких металлических порошков со сверхтонкими порошками окислов, или на внутреннем окислении порошков низколегированных сплавов, в которых основа сплава представляла собой сравнительно благородный металл, в то время как растворенное вещество имело высокую свободную энергию образования окислов. С помощью первого способа можно получить прочные стабильные структуры при сравнительно недорогой технологии изготовления с помощью второго — значительно более прочные структуры, но при более трудоемкой и более дорогой технологии их приготовления.  [c.153]

Термическое разложение нитрата тория на порошке металлического никеля с размером частиц 2—5 мкм при соответствующей технологии приготовления дает сплавы, упрочненные дисперсными оксидами, со стабильной структурой и превосходящие по характеристикам прочности при растяжении и длительной прочности все сплавы никеля с металлическими окислами,  [c.160]

Промежуточные фазы- многокомпонентные кристаллические фазы, при образовании которых возникает кристаллическая решетка, отличающаяся от кристаллических решеток исходных компонентов. Такие фазы имеют место при образовании химических соединений, например, интерметаллических (интерметаллидов) - соединений разных металлов. Большое число химических соединений, образующихся в металлических сплавах, не подчиняется законам валентности и не имеет постоянного стехиометрическоГо состава. Они образуют различного рода промежуточные фазы. На основе химического соединения могут возникать твердые растворы, обусловленные дефектами структуры. Появление стабильных промежуточных соединений приводит к сужению области первичных твердых растворов. Вероятность образования таких соединений в сплавах будет тем больше, чем более электроотрицательным является один из элементов и электроположительным - другой.  [c.63]

Со—Р N1—Со—Р и другие металлические покрытия на детали любой конфигурации из железных, медных, алюминиевых, магниевых, титановых и других сплавов, а также из, неметаллов. Основные характеристики процесса, в том числе скорость осаждения и стабильность раствора, состав, структура и свойства покрытий, а также их стоимость, определяются составом применяемых рабочих растворов, их кислотностью, температурой и способом ведения процесса (проточный или непроточный), плотностью загрузки ванны и порядком размещения в них деталей, а также параметрами  [c.285]

Кристаллические структуры твердых тел обусловлены межатомными связями, возникающими в результате взаимодействия электронов с атомными остовами. Вывод металлических структур — ОЦК, ГЦК и ПГ — из электронного строения атомов представляет кардинальную проблему физики металлов [1, 21. В основе квантовой теории металлов лежит теория энергетических зон [3 —11]. Она рассматривает поведение электронов в периодическом поле решетки. Кристаллическая структура определяется дифракционными методами и вводится в зонную модель априори как экспериментальный факт, без объяснения ее происхождения. Разрывы непрерывности энергий электронов приводят к образованию зон Бриллюэна, ограниченных многогранниками, форма которых зависит от симметрии кристалла. Характер заполнения зон и вид поверхности Ферми различны для металлов, полупроводников и изоляторов. Расчеты позволяют получить з нергетическую модель, количественно описывающую энергетическое состояние электронов и физические свойства твердых тел. Однако из зонной модели нельзя вывести кристаллическую структуру, поскольку она вводится в основу построения зон как экспериментальный факт. Расчеты зонных структур и физических свойств металлов получили широкое развитие благодаря теории псевдопотенциала 112—19]. Они позволяют оценить стабильность структур металлов, но не вскрывают физическую природу конкретной геометрии решетки.  [c.7]

Относительную стабильность металлических стекол оценивают по разности температур кристаллизации Тк и стеклования Tg при неп рерывном нагреве ДТ=Ту-Тк. Однако на практике чаше всего используют температуру кристаллизации Т , так как Tg установить трудно. Теоретически Tg определяют как температуру, ниже которой вре мя релаксации так велико, что равновесное состояние не может быть достигнуто за конечный промежуток времени (рис. 4.1). Отсюда следует, что при температуре стеклования Tg не могут образовываться зародыши кристаллической фазы критического размера, т.е. структуры фаз при Tтемпературные зависимости показателей основных физических свойств фаз испытывают или скачки или переломь[ (рис. 4.2). С позиций синергетики температура стеклования является критической температурой (точкой бифуркации), отвечающей неравновесному фазовому переходу при достижении которого система сама выбирает термодинамический путь своего дальнейшего развития [3].  [c.125]


На макромасыггабе образование спиральных структур в металлических материалах было обнаружено в тонких магнитных пленках феррит-гранатов с направлением легкой оси намагничивания перпендикулярно пленке в случае приложенного внешнего магнитного поля [99, 100, 101]. Образование магнитных доменов в феррит-гранатах происходит, когда на пленку, предварительно намагниченную до насыщения магнитным полем Н, приложенным вдоль легкой оси, подается импульс магнитного поля, обратного по направлению. В результате этого вблизи дефектов образуются стабильные локаль-  [c.202]

Результаты исследований процессов, связанных с соединением металлов, на основе синергетики должно привести к разработке принципиально новых технологических процессов (1), получению соединений из металлических материалов в аморфном состоянии, удравлению химическим составом и химической стабильности сварного соединения, элективному регулированию кристаллической структурой и вд-пряженно-деформационным состоянием сварного соединения и конструкции, в целом. Кроме того, появляется возможность прогнозирования появления штатных дефектов формирования соединения газовые поры, горячие и холодные трещины, предупреждение развития замедленного разрушения и цр.  [c.111]

Такое дуплексное покрытие обеспечивает высокую работу выхода электронов (4,9—5,0 эВ), имеет высокое сопротивление ползучести и стабильность структуры зерна при рабочей температуре. Массовое содержание примеси фтора в нем не превышает (1—2)10-3%. Дуплексные вольфрамовые покрытия успешно проработали свыше 4-10 ч при 1973 К, плотности тока 10,6 А/см2 и удельной мощности ТЭН 8 Bт м [117]. Чтобы предупредить и уменьшить растворимость вольфрамового покрытия в карбидном топливе, к последнему рекомендуется добавить перед прессованием и спеканием около 4% порошка металлического вольфрама. После спекания в таком топливе свободный вольфрам отсутствует, так как он полностью переходит в соединение UW 2, равномерно распределенное в матрице. Чтобы обеспечить высокие выгорания и предупредить распухание, карбидное топливо приготовляется с 75—79%-ной плотно-  [c.141]

Благоприятные результаты действия высоких концентраций Si на окалино-стойкость и ростоустойчнвость связаны с получением стабильной структуры графит + кремнеферрит. По мере увеличения содержания Si критические точки располагаются при более высокой температуре. Так, прн б % Si точка Ас располагается около 950 °С, а при 7 "о Si — около 1000 С. Кремний, входя в твердый раствор, повышает температуру образования непрочной вюститной фазы (Рез04), т. е. увеличивает стойкость металлической основы против окисления.  [c.67]

Совместимость Мк и Мп прежде всего определяется характером физико-химического взаимодействия их металлических основ, определяемого диаграммой состояния. Хотя диаграмма состояния характеризует зависимость структуры сплавов от их химического состава лишь в равновесных условиях, термодинамически неравновесная система паяемый металл — припой в условиях пайки стремится к стабильному или метастабильному рапиовесию, и поэтому диаграмма состояния с учетом кинетического фактора позволяет прогнозировать направление развития физико-химических процессов на их границе как при пайке, так и при эксплуатации паяных соединений.  [c.72]

Как отмечалось в п. 8.1, эрозия или коррозия медных частей докотлового оборудования ведет к образованию нерастворимых или растворимых соединений меди, попадающих вместе с водой в паровой котел. Здесь часть меди отлагается либо в результате разложения бикарбонатов или соединений аммиака, либо (при коллоидальном ее состоянии) путем выпадения относительно стабильного осадка. Поэтому для осадка паровых котлов характерно содержание меди, зависящее наряду с другими факторами от вида и количества накипи или иных отложений. Паровые котлы могут успешно эксплуатироваться без признаков коррозии при наличии в осадке меди, и точно так же возможно разрушение котлов от коррозии вне очевидной связи с медью. Однако известны случаи, когда в местах коррозии (иногда очень интенсивной) было обнаружено большое количество металлической меди. Например, окружающий коррозийную раковину металл иногда покрывается слоем меди, имеющей пластинчатую структуру. Известны и такие виды коррозии, при которых изменение толщины металла на значительной площади (или образование глубоких крупных раковин в стенках трубы) сопровождается образованием слоя магнетита, содержащего нередко легко различимые кристаллы меди. Такие наблюдения вызвали широкую дискуссию по вопросу о том, способствует ли медь коррозии паровых котлов или только сопровождает этот процесс.  [c.203]

На защитные свойства осадка СаСОз и продуктов коррозии железа, осаждающихся на металлической поверхности в результате вторичных процессов, а также на структуру этих осадков и их физико-химические свойства (сплошность, плотность,, однородность, прочность адгезии) влияют pH и химический состав приэлектродного слоя, содержание растворенного кислорода и ионов-активаторов (С1 , 504 ). В результате электрохимической коррозии металла с кислородной деполяризацией вблизи участков поверхности, где протекает катодная реакция восстановления кислорода, накапливаются гидроксид-ионы. При малой буферной емкости речной воды это может привести к значительному увеличению pH приэлектродного слоя (по сравнению с pH в объеме воды). Индекс насыщения возле поверхности металла может оказаться значительно выше его значения, вычисленного на основании данных химического анализа воды,, т. е. стабильная или даже агрессивная вода окажется способной к образованию карбонатных осадков [26].  [c.46]

Комплексное легирование свинца сурьмой, теллуром и медью в оптимальных концентрациях позволило получить высокоэффективные сплавы для зашитных кабельных оболочек. Свинцовый сплав РЬ - Sb - Си - Те обеспечивает кабельной оболояке высокое сопротивление усталости, ползучести и активной деформации в широкой области температур, а также хорошую технологичность при ее изготовлении. Основой для такого комплекса положительных характеристик является специфическая мелкозернистая термостабильная структура, обуславливающая стабильность свойств в эксплуатации. Сплавы вышеуказанной композиции находятся на уровне мировых стандартов - они обладают лучшим комплексом эксплуатационных и технологических характеристик по сравнению с наиболее перспективными отечественными и иностранными аналогами. Основной сплав этой системы ССуМТ, состава РЬ + (0,30-0,45)% Sb + (0,02-0,05)% Си + (0,03-0,05)% Те, включен в ГОСТ 1292-74 на сурьмянистый сплав. Обладая максимальным уровнем механических свойств, он используется для кабелей, эксплуатируемых в наиболее тяжелых условиях кабели маслонаполненные связи в изделиях, транспортируемых на большие расстояния для производства свинцовых труб. Данный сплав является одним из лучших для металлических оболочек термостойких кабелей, применяемых в составе УЭЦН.  [c.294]

Кроме линий поглощения агрегаций, имеющих менее 10 атомов серебра, в оптических спектрах появлялась и усиливалась по мере роста концентрации металла в матрипе широкая полоса поглощения при 1 3000 А, которая была обусловлена плазменными колебаниями электронов в частицах, содержащих iOO атомов [50]. Достаточно толстые осажденные слои позволили применить для исследования колебательных уровней энергии кластеров лазерную рамановскую спектроскопию, полученные спектры показаны на рис. 118 для разных концентраций металла в криптоновой матрице. Трансформация спектров, очевидно, обусловлена изчезновением малых и появлением более крупных атомных агрегаций. На основании проведенных оптических исследований Шульце м др. [50] заключили, что необходимо свыше 10 атомов, чтобы молекулярный тип электронных свойств кластеров серебра изменился в направлении к металлическому типу, и что переход от наиболее стабильной линейной к трехмерной структуре кластеров ожидается уже для Ag4 или Ags.  [c.263]


Кажется, что возможность нахождения асимметричного максимума в элементах из более высоких групп и низких периодов Периодической системы выше в этих элементах связь в твердом состоянии преимущественно неметаллическая [47]. Все это наводит на мысль, что такое поведение связано с сохранением в жидком состоянии определенной доли ковалентной или гомеополярной связи. Эта связь, возможно, присутствует в виде кратковременной локализации валентных электронов в связанном состоянии между парами или группами соседних атомов, возможно, в процессе резонансной гибридизации как рассматривалось Полингом [48]. Получающаяся в результате этого структура становится устойчивее за счет относительной стабильности и направленности неполярной связи. Эта преимущественно ковалентно связанная структура может существовать небольшими комплексами или островками в металлически связанной матрице . Если это так, то пространственное расположение атомов в пределах самих комплексов, возможно, будет одинаково, но совершенно отлично от более неупорядоченного расположения атомов в металлической матрице (к сожалению, невозможно определить пространственное расположение атохмов из данных по рентгеновскому рассеянию).  [c.22]

В отличие от обычных (литых) сплавов, получаемых сплавлением исходных составляющих компонентов, металлокерамикой называют сплавы, структура которых образована путем прессования и спекания металлических порошков (иногда с добавкой неметаллических материалов). Процесс изготовления порошков и образования из них металлокерамики носит название порошковая металлургия . Методы порошковой металлургии раскрывают дополнительные возможности производства ценных для машиностроения материалов. При этом большое значение имеет возможность получения порошков очень тонкой структуры и с высокой степенью чистоты. В результате прессования образуются полуфабрикаты для дальнейшей переработки, например, штабики для вытяжки нитей накаливания электроламп, или готовые изделия, как например, пластинки твердых сплавов. Получение непосредственно готовых изделий имеет свои преимущества, в частности, практически отсутствуют отходы. Однако вследствие больших давлений, потребных для прессования (порядка 6000 кг/сл ), размеры изделий ограничиваются. Усилия в порошке в отличие от жидкости распространяются неравномерно и поэтому возможно получать изделия со стабильными свойствами металлокерамики лишь простой геометрической формы. Вслед-ствии различной степени усадки порошков при прессовании затруднено получение илделий с точными размерами. Наибольшее практическое значение имеет изготовление методами порошковой металлургии твердых и тугоплавких сплавов, электроковтактных, фрикционных, антифрикционных и др5 гих материалов.  [c.165]

Важное условие применимости радиохимического метода для измерения малых скоростей коррозии металлов — отсутствие радиационных эффектов. Возможны два типа таких эффектов. Во-первых, под влиянием облучения в реакторе могут произойти изменения в структуре и составе образца (вследствие появления микропримесей, например радиоактивного изотопа золота и стабильного изотопа ртути в случае платины). Во-вторых, при помещении радиоактивного образца в раствор может измениться состав приэлектрод-ного слоя вследствие появления радикалов и других продуктов радиолиза. Теоретически можно показать, однако, что для металлических образцов и сравнительно мягких условий облучения, используемых для их активации, появления радиационных эффектов ожидать трудно [10]. Опыт подтверждает этот вывод. Так, при растворении гладкой платины в кислых растворах было показано, что скорость растворения зависит только от условий электролиза, но не зависит от продолжительности облучения в реакторе, удельной активности образца и его термообработки после облучения, обеспечивающей уменьшение дефектности структуры [5].  [c.97]

Наиболее известный вариант такого компьютера, содержащего практически неограниченное число ядерный спинов-кубитов, был детально рассмотрен в 1998 году Б. Кейном (В. Капе) [247]. В его основе лежит кремниевая структура (см. рис. 6.6, заимствованный из статьи [247]), верхним слоем которой служила окись кремния (ЗЮг) толщиной в несколько нанометров затем следует тонкий слой бес-спинового изотопа кремния Si, в который внедрены донорные атомы стабильного изотопа фосфора P, замещающие атомы в узлах кристаллической решётки. Атомы фосфора Р обладают ядерным спином / = 1/2, взаимодействующим с ядерными спинами ближайших атомов фосфора благодаря сверхтонкому взаимодействию с электронами этих соседей из-за перекрывания электронных волновых функций различных доноров. Ядерные спины этих донорных атомов в такой структуре выполняют роль кубитов. Современная технология позволяет расположить донорные атомы P регулярным образом в кристаллической решётке изотопа кремния Si, а также разместить над каждым донором свой управляющий металлический затвор (обозначенный на рис. 6.6 буквой А). Набор этих затворов образует линейную решётку , причём каждый из затворов служит для индивидуального управления резонансной ядерной частотой кубитов. Между А-затворами размещалась решётка J-затворов, контролирующих взаимодействие ядерных спинов соседних донорных атомов.  [c.199]

Дисел аниды переходных металлов (Мо, W, Nb, Та и др.) имеют сложную гексагональную решетку типа dlo, которая является производной от структуры типа NiAs с освобожденной частью узлов, ранее занятых атомами металла. Этим объясняется достройка конфигурации валентных электронов атомов селена s p до стабильной конфигурации s p . Образование слоистой структуры в соединениях такого типа можно объяснить тем, что внутри отдельных слоев, образованных как атомами металла, так и неметалла возникают преимущественно сильно ковалентные связи, а связь между отдельными слоями осуществляется нелокализованными электронами и носит металлический характер. Прочность меж-слойной связи будет зависеть, по-видимому, от степени делокалйзации электронов в кристаллической решетке  [c.27]

Особо твердые инструментальные материалы созданы на основе нитрида бора и нитрида кремния. В них нет пластичной металлической связки. Изделия из этих материалов изготавливают либо с помощью взрыва, либо в условиях сверхвысоких статических давлений и высоких температур. Изделия из нитридов бора и кремния используют в качестве материала иденторов (наконечников) для измерения твердости тугоплавких материалов в интервале температур 700—1800 °С, как абразивный материал и в качестве сырья для изготовления сверхтвердых материалов, применяемых для оснащения режущей части инструментов для обработки закаленных сталей, твердых сплавов, стеклопластиков, цветных металлов. Они обладают высокой твердостью HRA 94—96), прочностью, износостойкостью, теплопроводностью, высокой стабильностью физических свойств и структуры при повышении температуры до 1000 °С. Их преимуществом является доступность и дешевизна исходного продукта, благодаря чему они используются для замены вольфрамсодержащих твердых сплавов.  [c.204]

Технологические процессы в металлургии, гарантирующие получение отливок с заранее заданной структурой и стабильными свойствами, способствуют более широкому применению литых заготовок в ответственных конструкциях, машинах и механизмах. Прогресс в этой области связан с использованием технологических приемов воздействия на металлические расплавы в процессе их плавки и разливки. Новые методы суспензионного модифицирования, получившие развитие в трудах советских ученых (в частности, С.С. Затуловского), позволяют измельчить макро- и микроструктуру, уменьшить химическую неоднородность металла, улучшить строение границ зерен и повысить прочностные свойства. Однако известные методы и варианты суспензионного модифицирования имеют ряд недостатков, обусловленных главным образом относительно большим (обычно 5- 40 мкм) размером частиц. Основным недостатком является неоднородность суспензий, вызванная неравномерным распределением частиц в объеме расплава, а также возможностью седиментации по плотности и низкой устойчивостью к коагуляции и растворению. Более перспективны новые способы гетерогенизации жидкого металла экзогенными и эндогенными частицами суспензий на основе ультрадисперсных тугоплавких соединений.  [c.373]

Растворение лигатуры протекает вне контакта с воздухом, поэтому при оптимальных условиях, достигаемых при соблюдении указанного соотношения, инмолд-процесс обеспечивает достаточно высокое усвоение магния чугуном (свыше 80 %). Относительный расход модификатора при этом составляет 0,5-0,8 %, а при других способах (кроме МДС-процесса) - 1-2 %. Для этого метода характерно стабильное получение в литом состоянии структуры и свойств чугуна, отсутствие цементита в металлической матрице даже при относительно низком содержании кремния.  [c.519]


Смотреть страницы где упоминается термин Стабильность металлических структур : [c.99]    [c.78]    [c.229]    [c.55]    [c.337]    [c.150]    [c.163]    [c.181]    [c.191]    [c.125]    [c.150]    [c.154]    [c.97]    [c.5]   
Смотреть главы в:

Теория твёрдого тела  -> Стабильность металлических структур



ПОИСК



Стабильность

Стабильность структур

Структур металлических стабильност

Структур металлических стабильност

Структура металлическая



© 2025 Mash-xxl.info Реклама на сайте