Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Активность удельная

Последнее из этих уравнений означает, что соприкасающаяся плоскость, найденная для любой точки кривой равновесия нити, содержит активную удельную силу.  [c.366]

Величина активного удельного сопротивления R у]/2  [c.168]

Если полагать концентратор нагруженным на некоторое чисто активное удельное сопротивление нагрузки Го.н, равномерно распределенное по выходному поперечному сечению, то б, характеризующие картину [23].  [c.314]

Удельная массовая активность. Удельной массовой активностью а радиоактивного источника называют величину, равную отношению активности А радиоактивного источника к его массе т, т. е.  [c.124]


Активная удельная мощность, поглощаемая средой [6, 35], равна  [c.16]

Найдя значения активных удельных мощностей на всех этапах нагрева с учетом тепловых потерь на третьем этапе, решают системы дифференциальных уравнений. Расчет производят с помощью конечно-разностного метода. В результате преобразований получают следующие формулы для расчета на первом и втором этапах  [c.109]

Для почв и грунтов с низкой коррозионной активностью удельное сопротивление составляет более 100 ом-м, для нормальной коррозионной активности 20— 100 ал-л, для повышенной коррозионной активности 10— 20 ом-м, для высокой коррозионной активности 5—10 ом-м, для очень высокой коррозионной активности — менее 5 ом-м.  [c.27]

Коррозионная активность Удельное электрическое сопротивление, Ом -м Потеря массы опытного образца, г за 1 ч Содержание гумусовых веществ, % к массе почвы Плотность.поляризуемого тока, мА см<  [c.85]

Процесс непрерывной замены отработавшего топлива свежим увеличивает глубину выгорания примерно в 1,5 раза по сравнению с глубиной выгорания топлива в неподвижной зоне. Повышается при этом и радиационная безопасность ядерного реактора, поскольку отпадает необходимость в компенсации начальной избыточной реактивности стержнями СУЗ. Реализация принципа одноразового прохождения активной зоны значительно уменьшает удельный расход урана, а также удельную загрузку ядерного горючего.  [c.7]

Удельный уровень активности первого контура при температуре гелия на выходе из реактора - 950°С составляет  [c.28]

Критерий энергетической оценки Е для реакторов с шаровыми твэлами определяется четырьмя независимыми друг от друга сомножителями первый из них характеризуется только параметрами шаровой укладки (диаметр шарового твэла, объемная пористость активной зоны т) второй отражает физические свойства газового теплоносителя (теплопроводность X, удельная теплоемкость Ср, газовая постоянная R и динамическая вязкость ji) третий определяется параметрами газового теплоносителя (средним давлением в активной зоне р, нагревом газа в зоне ДГг, средней абсолютной температурой 7 pi i четвертый — средней объемной плотностью теплового потока qv и геометрией активной зоны.  [c.92]

Выбор рациональных коэффициентов смещения является одной из основных и наиболее сложных задач. От коэффициента смещения зависит форма зуба, наличие или отсутствие подрезания, концентрация напряжений, т. е. изгибная прочность зуба. С увеличением смещения активный профиль перемещается на участки эвольвенты с большими радиусами кривизны, что приводит к увеличению контактной прочности зуба. С изменением смещения изменяются также скорость скольжения и удельные скольжения, т. е. абразивное изнашивание активных поверхностей зубьев. Увеличение смеще-  [c.27]


Удельные скольжения vi и va характеризуют изнашивания активных профилей зубьев.  [c.34]

Фактически зацепление происходит на активно линии зацепления, поэтому удельные скольжения целесообразно исследовать лишь в пределах ga (эти участки диаграмм заштрихованы).  [c.34]

ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда  [c.218]

При малой скорости истечения горючей смеси пламя может втянуться в полость сопла и во внутреннюю часть горелки. Для того чтобы предотвратить нежелательное явление, горючее и окислитель подают раздельно по каналам или трубкам малого сечения (через сетки), удельная поверхность которых достаточно велика и представляет собой место поглощения активных центров, в результате чего цепная реакция обрывается, а пламя гаснет.  [c.312]

При работе механизмов при высоких температурах, в химически активных средах и в вакууме жидкие смазки теряют свои свойства. В этих случаях применяют твердые смазки, к которым относятся графит, а также сульфиды и селениды молибдена или вольфрама. Из твердых смазок наибольшее распространение получил дисульфид молибдена (МоЗ ), который наносится на трущиеся поверхности в виде пленки толщиной 20. . . 30 мкм и применяется в обычных условиях и 1 вакууме при больших перепадах температур (—180. .. -г 400 С) и высоких удельных давлениях. В опорах трения часто применяют металлокерамические самосмазывающиеся материалы в виде бронзо-графитовых и железо-графитовых материалов, где кроме твердой смазки (графита) присутствует жидкая смазка, заполняющая поры материала. Применяют также пористые антифрикционные материалы на основе меди и серебра, поры которых заполнены сульфидами, селенидами и теллуридами молибдена, вольфрама, ниобия. В этих случаях твердая смазка обеспечивает высокую несущую способность и малые коэффициенты трения.  [c.168]

Связь между концентрацией радиоактивных ядер п и удельной активностью а их в теплоносителе определяется обычной формулой  [c.97]

Вначале рассмотрим исходное уравнение в общем виде, одинаково применимое как для мгновенных продуктов деления, так и для продуктов деления ядерного реактора. Заметим, что в реакторе, несмотря на выгорание первичного ядерного горючего, обычно поддерживается постоянная мощность, т. е, постоянное (во времени) число актов деления ядер. Чтобы достигнуть такого постоянства мощности (в условиях выгорания делящегося вещества), требуется соответствующее нарастание плотности потока нейтронов в активной зоне. В первом приближении зависимость между удельной мощностью реактора щ [<зг/г] и плотностью потока нейтронов Ф, обусловливающих деление, можно представить в виде  [c.175]

Удельная активность, у-эквивалент, у-постоянная  [c.183]

Расчет удельной активности и у-эквивалентов смеси продуктов деления производится по формулам 13.2 с последующим суммированием полученных результатов по всем изотопам. Необходимо отметить, что величины Q, М, а также 5, за небольшими исключениями, линейно зависят от тепловой мощности реактора го. Поэтому они обычно рассчитываются на единичную мощность w. Естественно, что при этих условиях численные значения Р, М и 5, выраженные в кюри на килограмм, в грамм-эквивалентах Ра на килограмм и в мегаэлектронвольтах в секунду на килограмм, будут равны их значениям в кюри на киловатт, грамм-эквивалентах Ра на киловатт и в мегаэлектронвольтах в секунду на киловатт соответственно.  [c.183]


При расчетах защиты от у-излучения объемных источников, достаточно знать удельные у-эквиваленты в миллиграмм-эквивалентах Ка на литр и эффективный спектральный состав у-излучения. Для решения проблемы защиты персонала от источников внутреннего облучения и определения предельно допустимых выбросов радиоактивных изотопов во внешнюю среду с вентиляционным воздухом и жидкими отходами, а также для многочисленных технологических целей необходимо знать изотопный состав источников и удельную активность в кюри на литр. В отдельных случаях, например для характеристики поля у-излучения активной зоны реактора, в которой кроме продуктов, деления имеются мгновенные и захватные у-кванты, а также наведенная активность, вместо у-эквивалента пользуются другой физической величиной мощностью источника в мегаэлектронвольтах в секунду или у-квантах в секунду на единичный объем или массу. В Приложении II за основу приняты удельные у-эквиваленты, которые широко применяются в практике проектирования защиты от у-излучения смеси продуктов деления.  [c.189]

На рис. 13.3 приведены кривые зависимости удельной активности <Э(7, t) от времени кампании Т и выдержки i при удельной мощности реактора ш = 1 кет/кг.  [c.190]

Рис. 13.3. Зависимость удельной активности смеси продуктов деления, в реакторе на тепловых нейтронах от кампании Т и выдержки I при удельной мощности ш = кет/кг облученного топлива. Рис. 13.3. Зависимость удельной активности смеси <a href="/info/101229">продуктов деления</a>, в реакторе на <a href="/info/13828">тепловых нейтронах</a> от кампании Т и выдержки I при <a href="/info/29099">удельной мощности</a> ш = кет/кг облученного топлива.
Таблицы защиты для объемных источников имеют входными аргументами геометрические параметры, эффективную энергию у-излучения и фиктивную удельную активность ф, которая определяется следующими соотношениями  [c.195]

Здесь — линейный коэффициент ослабления у-квантов в материале источника радиусом Р, р = Ь/Р о — сорбированная активность на единицу поверхности <3у — удельная активность на 1 см источника.  [c.196]

Величина слоя половинного ослабления А1/2 определяется по наиболее проникающей из двух энергий, т. е. Д1/2 можно определить как по главной, так и по конкурирующей линии. В связи с тем что А1/2 зависит от толщины защиты, его значение определяют в диапазоне толщин dг или dц. На практике, если пользоваться таблицами типа тех, которые приведены в гл. VII или в книге [1]. А1/2 определяют как разность толщин для удельных активностей, различающихся в 2 раза, например  [c.199]

РАДИОАКТИВНОСТИ ЕДИНИЦЫ —единицы измерения активности радиоактивных препаратов и концентрации радиоактивных нуклидов в различных средах. С Р. е. тесно связаны единицы физ. величин, характеризующих выход излучения из радиоактивного источника и поле ионизирующих излучений вокруг радиоактивных препаратов. К этим величинам относятся уд. гамма-постоянная уизлучающего нуклида и плотность потока частиц или квантов. Активность препарата в Международной системе единиц (СИ) измеряется числом актов радиоактивного распада в препарате в секунду распад/сек). Допускается применение внесистемных единиц распад/мин и кюри =. 3,700-101 > распад сек. Для смеси неск. нуклидов указывается отдельно активность кажд010 нуклида в смеси. Единица активности воспроизводится с помощью эталонных установок эталонными методами (см. Радиоактивности из.мерения). Концентрация радиоактивных нуклидов (а также активность удельная) измеряется в распад сек м или распад сек кг, внесистемные единицы кюри1см , кюри г и т. п.  [c.270]

Определить при помощи импеданс-диаграммы коэф( 1Ци-ент поглощении звука системой, состоящей из пяти слоев пористого материала с активным удельным иупедансом , стоящих на расстоянии С = сЪ см друг от друга перед твердой стенкой (последний СЛОЙ отстоит от твердой стенки также на сЪ см). Р<1Счет произвести на частотах 680 и 340 Гц.  [c.14]

Из-за существенно более высокой энергонапряженности топлива и ограничения по температуре необходимый размер твэ-лов должен быть практически равным размеру микротвэлов, и,, таким образом, только они могут быть использованы в качестве тепловыделяющих элементов в реакторе БГР. Поскольку в реакторе БГР удельный расход охлаждающего гелия через поперечное сечение активной зоны на несколько порядков выше, чем в реакторе ВГР, а располагаемый перепад давления, приходящийся на активную зону, ограничен 2—3% абсолютного значения давления гелия в контуре, то задача выбора рациональной схемы охлаждения топлива становится одной из главных.  [c.37]

Коэффициент теплообмена с дисперсным теплоносителем Оп определяется зависимостями, полученными в гл. 6, 8 и 10. При расчете теплоотвода в активной зоне К-р = аа-Как отмечалось ранее, скорость слоя не должна превышать предельной величины (гл. 9), а скорость потока газовзвеси, при которой обеспечивается равная с чисто газовым теплоносителем затрата мощности на перемещение, следует определять согласно данным гл. 4. Компоновка поверхности нагрева, омываемой гравитационным слоем, возможна при продольном и -поперечном расположении трубок. Во всех случаях следует учесть, что возникают трудности в распределении поверхности нагрева, вызванные высоким удельным 1весом твердого теплоносителя и, следовательно, малым проходным для него сечением. Имеющиеся данные позволяют рекомендовать внешнее обтекание продольно-оребренной поверхности (гл. 9, 10). В ряде случаев целесообразен переход на поперечное обтекание трубок при оребрении и вибра-ции последних (гл. 10).  [c.386]

Электропроводимость грунтов, которая колеблется от нескольких единиц до сотен Ом на метр зависит главным образом от его влажности, состава и количества солей и структуры. Увеличение засоленности грунта облегчает протекание анодного процесса (в результате депассивирующего действия особенно галоидных солей), катодного процесса (например, ускорение катодного процесса окисными солями железа) и снижает электросопротивление. Во многих случаях величина электропроводности почв и грунтов с достаточной точностью характеризует их коррозионную агрессивность для стали и чугуна (за исключением водонасыщенных грунтов) и используется в этих целях. Ниже приведена характеристика коррозионной активности грунтов по их удельному сопротивлению  [c.387]


Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

Жидкости-электролиты представляют собой растворы каких-либо веществ в воде, либо расплавы солей сульфидов, окислов и т. п. Ионы, находившиеся ранее в узлах кристаллической решетки, в электролите приобретают большую подвижность и могут служить носителями тока. Проводимость электролита зависит от природы, концентрации и коэффициента активности ионов. Все эти параметры сильно зависят от температуры электролита. В растворе ионы обычно менее активны из-за сольватирования их молекулами растворителя, что видно из приведенных ниже данных В. В. Фролова о числе ионов п, и удельной проводимости  [c.35]

Параметрические характеристики ряда представлены на рис. 7.4, д и показывают, что значения параметров по поперечной оси X4q и существенно отличаются друг от друга. Это противоречит общепринятой рекомендации, требующей равенства и Г4, для достижения максимума удельного синхронизирующего момента. В случае невозможности равенства соотношение Xiqjrtq рекомендуется выбирать в диапазоне 0,8—2,4 [71]. Этот же диапазон на рис. 7.4, д значительно расширен и равен 0,472—2,91. Аналогичный результат получается при оптимизации не только по критерию удельного синхронизирующего момента, но и по критерию удельной синхронизирующей мощности. Полученные параметрические характеристики также обусловлены ограничением по потребляемой активной мощности. Кроме того, они показывают, что оптимальные элементы ряда можно использовать как в качестве приемников, так и датчиков.  [c.209]

Для оценки влияния технологических допусков на рассеивание основных показателей выделены две группы параметров сельсинов. Кпервой группе (входные параметры) отнесены 17 конструктивных данных, определяющих геометрические размеры активной части сельсина. Ко второй группе (выходные параметры) отнесены такие интегральные показатели, как потребляемая мощность, ток возбуждения, удельный синхронизирующий момент и удельная мощность в поперечной оси.  [c.235]

Внутрикорпусную защиту часто выполняют в виде нескольких стальных экранов, окружающих активную зону. Иногда она начинается непосредственно от поверхности активной зоны и первые слои ее выполняют функции отражателя в других случаях дополнительные защитные экраны устанавливают между отражателем и корпусом. Толщина экранов может быть увеличена по мере удаления от зоны, поскольку удельная мощность  [c.66]

Первая характерная особенность подобных заводов — дистанционная техника управления, имеющая дело в основном с жидкими растворами и пульпами, а также сдувочными радиоактивными газами и аэрозолями. Второй особенностью данного производства является разнообразие радиационных характеристик. Так, коэффициенты очистки на стадии регенерации ядерного горючего могут достигать 10 —10 [2] соответственно изменяется и удельная активность источников. Относительный вклад эффективной энергии у-излучения также изменяется в широких пределах, хотя в большинстве случаев наибольший вклад обусловлен группой имеющей эффективную энергию  [c.170]

Радиационные характеристики смеси продуктов деления являются исходными параметрами для расчета защиты, тепло-съема и собственно ведения технологического процесса. Они зависят в основном от трех факторов удельной тепловой мощности реактора хю вт/г (или плотности потока нейтронов Ф нейтрон1 см -сек) , продолжительности кампании Г и выдержки Для процессов переработки облученного топлива основными радиационными характеристиками смеси продуктов деления, которые в первую очередь необходимо знать при проектировании защиты, являются удельные активности  [c.183]

Если продукты деления образовались в реакторе с небольшой удельной мощностью (несколько киловатт на килограмм) и в результате сравнительно небольшой кампании (7< 180 дней), то горючее доступно для переработки уже через несколько месяцев. Например, после четырехмесячной выдержки удельная активность смеси продуктов деления уменьшается примерно в 30 раз, а у-эквивалент —в 50 раз [1]. С точки зрения защиты большой срок выдержки необходим еще и для того, чтобы максимально распались летучие продукты деления — изотопы радиоактивного иода (в основном 1 с 7 )/2 = 8,05 дня) и ксенона (в основном Хе с 7)/2 = 5,29 дня). Кроме того, такая выдержка необходима для распада изотопа Ва , дочерний продукт которого Еа имеют наиболее проникающие у-кванты (период полураспада Ва 71/2=12,8 дня). На рис. 13.4 показано изменение эффективного спектра у-излучения смеси продуктов деления в реакторе на тепловых нейтронах [1] в зависимости от 7 и 7 Видно, что наиболее проникающая компонента с эффективной энергией 1 = 2,25 Мэе дает минимальный вклад при выдержке /= 1004-150 дней. Дальнейшее возрастание вклада жесткой компоненты происходит главным образом вследст-  [c.190]


Смотреть страницы где упоминается термин Активность удельная : [c.194]    [c.104]    [c.380]    [c.93]    [c.132]    [c.337]    [c.68]    [c.109]    [c.185]    [c.185]    [c.198]   
Внедрение Международной системы единиц (1986) -- [ c.47 , c.71 , c.81 , c.161 , c.237 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте