Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия упругости кручения

Чему равна потенциальная энергия упругой деформации при кручении круглого вала  [c.54]

Широко применяют в технике пружины кручения (прижимные, аккумулирующие энергию, упругие звенья силовых передач и т, д.).  [c.716]

Общая формула для определения количества потенциальной энергии упругой деформации, накопленной в стержне при кручении, имеет вид  [c.77]

Потенциальная энергия упругой деформации при статическом кручении стержня  [c.406]


Ответ. Потенциальная энергия деформации состоит из энергии деформации изгиба в горизонтальной плоскости (У1), энергии деформации кручения (Уа) и энергии деформации упругих конце-  [c.168]

Однако прежде чем изучать свойства энергии упругого тела, прежде чем доказывать соответствующие теоремы, нам необходимо научиться вычислять энергию деформации бруса при различных видах нагружения. Кое-что мы с вами уже знаем. Мы вычисляли энергию растянутого стержня. Мы определяли энергию бруса при кручении. Настала пора рассмотреть этот вопрос с более общих позиций.  [c.70]

Пусть, например, имеет место последовательное соединение упругих элементов при растяжении-сжатии и при кручении (рис. 5.7, а и б). В каждом из этих случаев можно составить равенства величин потенциальной энергии упругих деформаций этих систем и эквивалентных им приведенных систем с одним единственным упругим звеном (связь) соответственно  [c.101]

Подытоживая все сказанное, запишем общее выражение для потенциальной энергии упругой деформации стержня в условиях сложного изгиба с одновременным кручением, а также растяжением-сжатием  [c.231]

Это явление имеет место и при кручении. Если упругий стержень в пределах упругости закрутить на некоторый угол, то после удаления внешних сил он будет раскручиваться и может произвести работу за счет накопившейся в стержне потенциальной энергии кручения. Пренебрегая необратимыми потерями (нагревание, внутреннее трение и т. п.), мы должны считать, что обнаруживаемая таким образом работа внутренних сил, определяемая количеством потенциальной энергии упругой деформации U, равна работе внешних сил А.  [c.175]

Удельная упругая энергия при кручении может быть получена по формуле (5.7) на расстоянии р от центра  [c.118]

Интегрирование производят по длине каждого участка, а суммирование—по всем участкам стержня. Для валов углы закручивания удобно отсчитывать в обе стороны от сечения, где расположен ведущий шкив вала. Общая формула для определения количества потенциальной энергии упругой деформации, накопленной в стержне при кручении, имеет вид  [c.62]

Потенциальная энергия упругой деформации при статическом кручении стержня У = 7Иф/2 = р р /2С.  [c.332]

В случае плоских напряженных состояний (совместное действие изгиба с кручением, кручения с растяжением или сжатием, изгиба с кручением и растяжением или сжатием) по теориям максимального касательного напряжения и теории потенциальной энергии упругого формоизменения общий коэффициент запаса прочности определяется из соотношения  [c.501]


Деформации твердого тела. Понятие о тензоре деформаций. Абсолютно упругое тело и его деформации. Коэффициент Пуассона. Упругие напряжения. Модули Юнга и сдвига. Деформации при изгибе и кручении. Устойчивость тел при деформациях. Энергия упругих деформаций.  [c.5]

Энергия упругой деформации при сдвиге и кручении  [c.264]

ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ ПРИ СДВИГЕ И КРУЧЕНИИ 265  [c.265]

Задача 356. На горизонтальный упругий вал, коэффициент упругости которого на кручение равен с, насажены три диска. Вследствие упругости вала, во время вращения системы около оси вала диски оказываются повернутыми на разные углы <р,, 1р2, срз. Вычислить потенциальную энергию системы. Центры тяжести дисков лежат на оси вращения.  [c.333]

При приведении параллельно соединенных упругих звеньев (связей), подверженных, например, деформациям растяжения-сжатия или кручения (рис. 5.8, а и б), как и при последовательном соединении, должно быть соблюдено условие равенства потенциальной энергии деформации приводимых и приведенных звеньев  [c.102]

Выше, в 13.1 мы подсчитывали потенциальную энергию U упругой деформации стержня через работу W одной внешней обобщенной силы (см. формулы (13.7), (13.11), (13.14)). Там же величину U определяли через внутренние усилия (см. выражения (13.16), (13.17)). Наконец, в случае сложного изгиба с одновременным кручением, а также с растяжением-сжатием энергию и рекомендовалось находить в виде суммы (13.18).  [c.235]

Простота вычислений может быть достигнута при помощи энергетического метода, вполне аналогичного известному методу С. П. Тимошенко. В самом деле, соотношения (66.19) можно рассматривать как соотношения задачи об устойчивости плоской формы изгиба упругой полосы переменного сечения, тогда энергетическое уравнение Тимошенко полностью сохраняет свой вид. Мы получим это уравнение, приравнивая при выпучивании энергию бокового изгиба и кручения работе внешних сил.  [c.284]

УПРУГАЯ ЭНЕРГИЯ - энергия, накопленная в теле (отнесенная или ко всему телу или к единице его объема) при упругой деформации. В случае справедливости закона Гука при статич. нагружении величина У. э. тела равна половине произведения усилия на соответствующее ему перемещение при растяжении где Р — растягивающее усилие, Д — абс. удлинение при изгибе или кручении V2 где М — изгибающий или крутящий момент, а ф — угол изгиба или закручивания в градусах. В единице объема У. э. равна половине произведения напряжений на соответствующие удлинения, напр, при растяжении i/jOe, где а — нормальное напряжение, е — относит, удлинение или укорочение. Величина У. э. и ее запас (см. Упругой энергии запас) существенны для развития во времени деформации и разрушения.  [c.379]

Закручиваемый в конструкции болт работает при комбинированном напряженном состоянии растяжение -f кручение. Последнее возникает от трения головки болта о стягиваемую поверхность. В ряде случаев стягиваемые болтами пакеты деталей конструкций обладают значительной упругой податливостью, с увеличением которой растет запас упругой энергии, воздействующей на болты.  [c.229]

Испытание позволяет оценить состояние поверхностей трущейся пары, различное сочетание материалов пары (шпилька 4 + гайка), влияние запаса упругой энергии и влияние смазки в условиях растяжения с кручением. Возникающие при кручении трещины начинают расти при значительно меньшей нагрузке в случае наложения растяжения с полным пакетом пружин (большой запас упругой энергии), чем при использовании жесткого блока (рис. 15.31).  [c.230]

При определении перемещений, прежде всего, в формуле (7.4) для потенциальной энергии стержневой системы с N упругими опорами растяжения-сжатия или кручения появляются дополнительные слагаемые, определяющие потенциальную энергию опор  [c.296]


Рубан П. М. Экспериментальное исследование внутреннего рассеяния энергии при кручении методом динамической петли гистерезиса в зависимости от числа циклов нагружения.—В кн. Вопросы рассеяния энергии при колебаниях упругих систем. Киев Гостехиздат УССР, 1962, с. 152—158.  [c.333]

Часть энергии вспышки затрачивается на работу упругого растяжения стенок цилиндра, шпилек крепления цилиндра и картера, на сообщение ускорения массе этих деталей (в пределах упругих деформаций). Другая часть энергии расходуется на деформацию сжатия поршня и шатуна изгиба поршневого пальца, изгиба и кручения коленчатого вала, вытеснение масляного слоя в зазорах между сопрягающимися деталями.- Значительная доля энергии тратится на сообщение ускорений поступательно-возвратно движущимся и вращающимся деталям. Большая часть этой энергии обратима и возвращается на последующих этапах цикла затраты же на работу вязкого сдвига, вытеснение маеляного слоя в зазорах, а также гистерезис при упругой деформации металла являются невозвратимыми.  [c.149]

Динамической расчетной моделью механизма, машины или прибора называют условное изображение их жестких звеньев, упрзтих и диссипативных связей, для которых соответственно указывают приведенные массы и моменты инерции, параметры упругости (или жесткости) и параметры диссипации (рассеяния) энергии, а также скорости движения или передаточные функции. В качестве примера на рис. 1.3 приведена простейшая расчетная динамическая модель машины, звенья которой и соединены упругодиссипативной связью, определяемой параметром упругости связи с при относительном кручении дисков и /3 и параметром / диссипации энергии в этой связи. Обозначения 1 и 2 одновременно отображают моменты инерции звеньев. Для выполнения расчетов по этой схеме путем составления дифференциальных уравнений вращательного движения должны быть указаны числовые значения названных параметров, а также даны моменты Мдв и движущих сил и сил сопротивления, приложенных соответственно к входному и выходному звеньям с угловыми перемещениями ф, и ф2. При этом моменты Л/да и могут быть заданы как функции обобщенных координат ф,, обобщенных скоростей ф и обобщенных ускорений ф i = 1,2). Пусть, например, = = Мд (ф,) и Ме = М,,(ф2). При этом математическая модель для приведенной динамической модели отобразится системой  [c.14]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]

Пример. Упругий вал с двумя дисками (рис. 3) свободно вращаетсн в подшипниках и может веошать крутильные колебания. Квазиупругий коэффициент вала с жесткостью на кручение 0J1 и расстоянием между дисками I равен Моменты инерции дисков обозначим через J, и Уг, их углы поворота — через (pi и ш. Кинетическая и потенциаль ая энергия системы соответственно равны  [c.69]

Техническая теория продольных колебаний стержней. Под стержнем понимают одномерное упругое тело (два размера малы по сравнению с третьим), обладающее конечной жесткостью на растяжение, кручение и изгиб. Пусть стержень, отнесенный к прямоугольной декартовой системе координат Oxyz, совершает продольные колебания. Параметры стержня являются функциями только одной продольной координаты X. По гипотезе плоских сечений любые точки, лежащие в плоскости, перпендикулярной к оси стержня, имеют одинаковые перемещения =-- и (х), 112= Н = 0. Все компоненты тензоров напряжений и деформаций, кроме Оц и считают пренебрежимо малыми. Выражения для потенциальной энергии деформации, кинетической энергии и потенциала внешних сил имеют вид  [c.146]


Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

Д. Линдли [230] провел расчет резиновых упругих пластинок при конечных деформациях МКЭ, используя выражение для энергии деформации, предложенное Л.Джентом и Л. Томасом [217]. Им же получены простые соотношения для определения модулей сжатия и кручения плоских элементов [231, 232], которые хорошо согласуются с численным анализом МКЭ.  [c.21]

Вернемся к нашему опыту, результаты которого представлены в виде диаграммы на рис. VI. 1. Если мы после того, как будет достигнута точка / на кривой, разгрузим образец, то произойдет некоторая упругая деформация, соответствуюш,ая разности абсцисс в точках / и g, а деформация og будет пластической или остаточной. Затем снова произведем нагружение до величины, соответст-вуюш,ей точке /, при этом мы приблизительно достигнем той же точки (обозначенной на рисунке h) за счет упругой деформации образца с тем же самым модулем упругости, что и при нагружении. Это видно на рисунке, где наклон линии gh совпадает с наклоном линии оа. Таким образом, кривая а — с — Ь — е является геометрическим местом точек всех пределов текучести, соответствующих последовательно возрастающей деформа ц и и Тем не менее, как уже ясно по причинам, с которыми мы уже сталкивались раньше в двух других случаях предел текучести не могкет непосредственно зависеть от деформации. Мы упоминали в параграфе 10 о повышении предела текучести материала при кручении стержня. Совершенно ясно, что это явление не может зависеть от того, закручиваем мы стержень в нанравлении часовой стрелки или против часовой стрелки. Поэтому предел текучести Тт должен быть четной функцией деформации сдвига у, т. е. функцией Y Вспомним (см. главу IV, параграф 5), что величина тт сама вычисляется, как корень квадратный от другой величины предельной упругой потенциальной энергии, которая сама есть четная функция напряжения. Полезно вспомнить и тот факт, что нри повышении предела текучести затрачивается р а б о т а на пластическую, по не полную деформацию. Представим себе, что существует такой гигант, который обладает достаточной силой для того, чтобы месить мягкое железо, так как мы месим мучпое тесто. Дадим ему стальной шар, которому он будет придавать любую форму, а в конце восстановит сферическую форму. Когда он вернет нам шар, деформация его будет нулевой все искажения формы — ноложительные и отрицательные — уничтожат друг друга. Однако, работа деформации будет все время возрастать до определенной величины. Если мы предположим, для того чтобы сделать наши рассуждения более определенными, что деформация представляет собой простые сдвиги, в положительном или отрицательном нанравлении, то работа, выраженная через деформацию, в соответствии  [c.338]


Смотреть страницы где упоминается термин Энергия упругости кручения : [c.412]    [c.336]    [c.304]    [c.376]    [c.428]    [c.430]    [c.428]    [c.111]    [c.278]    [c.239]    [c.82]    [c.801]    [c.43]   
Сопротивление материалов (1970) -- [ c.88 ]



ПОИСК



Кручение упругое

Упругая энергия

Упругая энергия деформации 17, 23, 43, 63, 117, 121,-аддитивна при некоторых условиях 43,---------------------анизотропных материалов 413,----------------------------------------изгиба в балках 60, 63, 220,-- — изотропных материалов 411,---------------------------------кручения 201,-пластинок

Энергия упругой деформации при сдвиге и кручении

Энергия упругости



© 2025 Mash-xxl.info Реклама на сайте