Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип Гамильтона и уравнения Лагранжа

ПРИНЦИП ГАМИЛЬТОНА И УРАВНЕНИЯ ЛАГРАНЖА ДЛЯ МЕХАНИЧЕСКИХ СИСТЕМ  [c.36]

ПРИНЦИП ГАМИЛЬТОНА И УРАВНЕНИЯ ЛАГРАНЖА  [c.37]

Принцип Гамильтона и уравнения Лагранжа  [c.36]

Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения.  [c.326]


Уравнения Лагранжа. Дифференциальные уравнения, соответствующие вариационному принципу Гамильтона, называют уравнениями Лагранжа (второго рода). Совокупность уравнений Лагранжа для рассматриваемой механической системы описывает движение этой системы наиболее экономным образом и является основным рабочим аппаратом аналитической механики.  [c.38]

Вариационный принцип Гамильтона и уравнения движения в форме Лагранжа и Аппеля. Некоторые интегрируемые задачи.  [c.190]

Таким образом, кривая yo t) является геодезической тогда и только тогда, когда вдоль нее выполнено тождество (2) и она является экстремалью функционала (1) в смысле принципа Гамильтона. Выпишем уравнения Эйлера—Лагранжа для этого функционала  [c.171]

П. Аппель , доказав эквивалентность принципа Гамильтона — Остро-градского и уравнений Лагранжа второго рода и ссылаясь на неправомерность этих уравнений в динамике неголономных систем, также подтвердил классическую точку зрения.  [c.90]

В основе излагаемого метода лежит принцип Остроградского (2.52), из которого вытекает принцип Гамильтона — Остроградского (3.38) и уравнения Лагранжа второго рода в различных переменных поля.  [c.102]

Уравнения Лагранжа второго рода могут быть получены из уравнений Эйлера (145.9) и непосредственно на основе уравнения (144.3), выражающего принцип Гамильтона — Остроградского. Так как  [c.405]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Утверждение, обратное принципу Гамильтона, важно и по другой причине оно позволяет установить, как изменяется лагранжиан при преобразовании координат и времени, и тем самым разъяснить, что собственно имеется в виду, когда утверждается, что уравнения Лагранжа ковариантны по отношению к таким преобразованиям. Рассмотрим преобразования  [c.280]


Легко показать, что экстремаль является инвариантом преобразований, т. е. если преобразования (62) выполняются одновременно над кривой пучка, представляющей собой экстремаль, и над функционалом, то преобразованная кривая остается экстремалью для преобразованного функционала. Отсюда и из обратного утверждения принципа Гамильтона (см. выше) сразу следует, что преобразованный прямой путь удовлетворяет уравнениям Лагранжа с лагранжианом L, который определяется по формуле (64).  [c.281]

Покажем, как исходя из принципа Гамильтона — Остроградского, получить уравнения Лагранжа второго рода. Пусть qi(t), <72(0. . (О обобщенные координаты, соответствующие прямому пути консервативной голономной механической системы. Рассмотрим окольный путь, определяемый функциями г+б г,. ... .., js- 6qs. Тогда, с точностью до членов первого порядка малости по сравнению с бдт и б т, будем иметь  [c.215]

Принцип Гамильтона состоит в следующем функции и (), , удовлетворяющие уравнениям Лагранжа, т. е. выражающие истинное движение системы под действием данных сил, удовлетворяют в то же время необходимым условиям того, чтобы действие по Гамильтону могло принять экстремальное значение (максимум или минимум) сравнительно со значениями во всех других возможных близких  [c.375]

Справедливо и обратное рассуждение для того чтобы 5 (0) = 0 при любой функции ц (0 надо, чтобы множитель при ц 1) под интегралом также равнялся нулю, т. е. из принципа Гамильтона тоже можно вывести уравнения Лагранжа. Чтобы выяснить, какое именно экстремальное значение принимает 5 — максимум или минимум или даже вообще не принимает ни того, ни другого (что тоже возможно при S (0) = 0), необходимо применить достаточные условия экстремума функционалов, т. е. интегралов, зависящих от линий, вдоль которых эти интегралы вычисляются.  [c.377]

Принцип Гамильтона состоит в следующем функции и У1, удовлетворяющие уравнениям Лагранжа (выражающие истинное движение системы под действием данных сил), удовлетворяют в то же время необходимым условиям экстремальности действия по Гамильтону, т. е. действие по Гамильтону имеет максимум или минимум сравнительно со значениями во всех других возможных близких движениях системы, переводящих ее из начального положения (при <= о) в конечное (t = tl).  [c.405]

Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского  [c.198]

При доказательствах интегральных принципов вводятся частные предположения о свойствах сил, действующих на точки системы, и свойствах связей. Но и здесь были получены из принципов М. В. Остроградского уравнения движения систем с голо-номными связями в форме уравнений Лагранжа второго рода, а из принципа Гамильтона — Остроградского — система канонических уравнений движения.  [c.210]

Вывод уравнений Лагранжа из принципа Гамильтона.— Предположим, что система имеет к степеней свободы и что ее положение определяется при помощи к обобщенных координат 1, При переходе из положения Р )  [c.222]

Прямые пути, т. е. истинные движения при заданной функции L, могут быть охарактеризованы как при помощи дифференциальных уравнений движения в форме Лагранжа, так и при помощи вариационного принципа Гамильтона. Однако между дифференциальными уравнениями движения и вариационными принципами имеется одно принципиальное различие.  [c.106]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]


Обобщение принципа Гамильтона на неконсервативные и неголономные системы. Принцип Гамильтона можно обобщить, по крайней мере формально, и на неконсервативные системы при этом мы придем к уравнениям Лагранжа в форме (1.50). Обобщенный таким путем принцип записывается следующим образом  [c.51]

Возможны, однако, и другие обобщения классической механики, порождаемые более тонкой аналогией. Мы видели, что принцип Гамильтона дает возможность компактно и инвариантно сформулировать уравнения механического движения. Подобная возможность имеется, однако, не только в механике. Почти во всех областях физики можно сформулировать вариационные принципы, позволяющие получить уравнения движения , будь то уравнения Ньютона, уравнения Максвелла или уравнения Шредингера. Если подобные вариационные принципы положить в основу соответствующих областей физики, то все такие области будут обладать в известной степени структурной аналогией. И если результаты экспериментов указывают на необходимость изменения физического содержания той или иной теории, то эта аналогия часто показывает, как следует произвести подобные изменения в других областях. Так, например, эксперименты, выполненные в начале этого века, указали на то, что как электромагнитное излучение, так и элементарные частицы обладают квантовой природой. Однако методы квантования были сначала развиты для механики элементарных частиц, описываемой классическими уравнениями Лагранжа. Если электромагнитное поле описывать с помощью лагранжиана и вариационного принципа Гамильтона, то методами квантования элементарных частиц можно будет воспользоваться для построения квантовой электродинамики (см. 11.5).  [c.60]

Вывод уравнений Гамильтона из вариационного принципа. Мы знаем, что уравнения Лагранжа являются следствием вариационного принципа Гамильтона (см. 2.1). Более того, вывод уравнений Лагранжа из этого принципа имеет определенное преимущество, так как он применим и к системам, выходящим за рамки обычной механики. Поэтому целесообразно найти такой вариационный принцип, который приводит непосредственно к уравнениям Гамильтона. Мы увидим, что это можно сделать с помощью обычного принципа Гамильтона  [c.250]

С целью записи полученного принципа Гамильтона в традиционном виде в 6.2 вводится вариационный интеграл. Этот класс интегралов оказывается настолько эффективным, что позволяет проводить разного рода преобразования, где встречается операция варьирования функционалов (сложных функций). С помощью вариационного интеграла удается сравнительно просто получить запись принципа Гамильтона и уравнений Лагранжа для гипердвижения в стандартном виде.  [c.174]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Поск ольку из принципа Гамильтона вытекают уравнения Лагранжа в независимых координатах (и наоборот), то принцип Гамильтона может бить положен в основу динамики голономных систем ).  [c.106]

В настоящей статье излагается теория расчета пластин, гп-ставленных из жестких и мягких слоев в произвольной последовательности. Для вывода уравнений используются вариационные принципы, что позволяет также получить естественные граничные условия и установить, таким образом, систему внутренних усилий, не противоречащих введенным гипотезам. Уравнения равновесия выводятся из принципа Лагранжа, уравнения колебаний — из принципа Гамильтона и уравнения нейтрального равновесия для задачи об устойчивости безмоментного состояния — из принципа Треффца. Обсуждаются частные и предельные случаи.  [c.32]

В этой главе прежде исего будет рассказано о том, как можно описать движение механической систел1ы с 5 стеиенями свободы в 25-мерном фазовом пространстве. Канонические уравнения выводятся из уравнений Лагранжа, Канонические преобразования обсуждаются весь 1а кратко, более подробно рассматриваются свойства скобок Пуассона, их инвариантность относительно канонических преобразований, их значение для отыскания интегралов движения и связь с бесконечно малыми контактными преобразованиями. Бегло рассмотрен случай движения заряженной частицы Б электромагнитном поле. В последнем параграфе принцип наименьшего действия выводится из вариационного принципа Гамильтона и обсуждается вопрос о том, как молено рассматривать время на равных правах со всеми остальными координатами q .  [c.123]


Полученные на основании принципа Остроградского — Гамильтона и уравнений Эйлера — Лагранжа уравнения движения обобщенной термоупругой среды (5.128), обобщенный закон Фурье (5.131), обобщенное уравнение теплопроводимости (5.133) и, как частный случай, уравнение движения изотерми-  [c.151]

А это негчто иное, ка с уравнения Лагранжа (2,11). ] Итак, принцип Гамильтона, так же как и уравнения, ] Лагранжа, можно использовать для определения дви- жения системы. .  [c.64]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Покажем теперь, как исходя из уравнений Лагранжа второго рода, можно прийти к принципу Гамильтона — Остроградского. Умножая каждое из уравнений (8.8) иа соответствующую вариацию ба,,,. и складывая между собой полученные выражения, нп1дем, что  [c.217]

Формулировка принципа. Ученые искали различные способы сведения уравнений движения к единому началу путем введения интегралов или функций, которые обращаются в минимум для действительного движения системы по сравнению с возможными 6an3KitMH движениями. Эта идея находит свое выражение прежде всего в принципе наименьшего действия (п. 486) затем следует более общий принцип Гамильтона (п. 483), из которого очень просто выводятся уравнения Лагранжа для голономных систем, но в случае систем не-голономных эти рассуждения и выводы становятся уже неверными. Мы займемся здесь принципом наименьшего принуждения Гаусса. Этот принцип, являясь наиболее общим, не вызывает к тому же никаких затруднений при его приложениях. Преимущество принципа состоит и в том, что он имеет простое аналитическое выражение, позволяющее свести нахождение уравнений движения произвольной системы, как голономной, так и неголономной, к нахождению минимума функции второй степени.  [c.420]

Имея разложения (38) — (39), вычисляем энергию деформации и кинетическую энергию для каждой отдельной ячейки. Последующее осреднение по ячейке дает среднюю энергию, полностью определяемую своим значением в центре волокна. После этого осуществляется завершающий этап перехода от системы дискретных ячеек к однородной континуальной модели, который состоит во введении полей кинематических и динамических переменных, непрерывных по всем координатам. Значения этих переменных на средних линиях волокон совпадают со значениями соответствующих параметров, вычисленными для системы дискретных ячеек. Следовательно, кинетическую энергию и энергию деформации, подсчитываемые так, как это описано выше, можно интерпретировать как плотности энергий для вновь введенной непрерывной и однородной среды. Плотность энергии деформации содержит не только члены, зависящие от эффективных модулей, но и члены, зависящие от некоторых констант, включающих характеристики как физических, так и геометрических свойств компонентов композита (т. е. от эффективных жесткостей ). Этим и объясняется название теории — теория эффективных жесткостей . Определяющие уравнения этой теории были получены при помощи принципа Гамильтона в совокупности с условиями непрерывности и с использованием множителей Лагранжа. Аналогичная теория для композитов, армированных упорядоченной системой прямоугольных волокон, была разработана Бартоломью и Торвиком [11].  [c.377]

Принцип Гамильтона. Выводя в предыдущей главе уравнения Лагранжа, мы рассматривали мгновенное состояние системы и небольшие виртуальные изменения этого состояния Таким образом, мы исходили из дифференциального принципа каким является принцип Даламбера. Однако уравнения Лаг ранжа можно получить и из другого принципа, в котором рас сматривается движение системы за конечный промежуток вре мени и небольшие виртуальные изменения движения в этом промежутке. Принципы такого рода известны как интегральные принципы .  [c.42]

Принцип Гамильтона можно распространить и на неголо-номные системы. При выводе уравнений Лагранжа из принципа Гамильтона или из принципа Даламбера мы использовали требование голономности связей только на последнем этапе, когда считали вариации 6qj независимыми. В случае неголономной системы ее обобщенные координаты не являются независимыми и не могут быть связаны друг с другом уравнениями связи вида f(q,, q2,. .., qn, t) — Q. Однако рассмотрение неголономных систем оказывается возможным, если уравнения их связей можно представить в виде  [c.53]


Смотреть страницы где упоминается термин Принцип Гамильтона и уравнения Лагранжа : [c.854]    [c.626]    [c.858]    [c.18]    [c.44]    [c.152]   
Смотреть главы в:

Механика упругих тел  -> Принцип Гамильтона и уравнения Лагранжа



ПОИСК



Гамильтон

Гамильтона уравнения

Зэк гамильтоново

Принцип Гамильтона

Принцип Лагранжа

Уравнения Лагранжа

Уравнения Лагранжа и Гамильтона



© 2025 Mash-xxl.info Реклама на сайте