Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород в металле и раскисление стали

КИСЛОРОД в МЕТАЛЛЕ И РАСКИСЛЕНИЕ СТАЛИ  [c.258]

Из зависимости (180) вытекает, что для уменьшения содержания оксидных включений в готовой стали необходимо обеспечить возможно меньшее содержание кислорода в металле перед раскислением, минимальное поглощение его металлом во время выпуска и разливки, максимальную скорость всплывания частиц и достаточную выдержку жидкого металла после раскисления.  [c.284]

Третий этап (завершающий) — раскисление стали — заключается в восстановлении оксида железа, растворенного в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород — вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами осаждающим и диффузионным.  [c.31]


Влияние кремния и марганца. Содержание кремния в углеродистой, хорошо раскисленной стали в качестве примеси обычно не превышает 0,37 %, а марганца — 0,8 %. Кремний и марганец переходят в сталь в процессе ее раскисления при выплавке. Они раскисляют сталь, т. е., соединяясь с кислородом закиси железа FeO, в виде оксидов переходят в шлак. Эти процессы раскисления улучшают свойства стали. Кремний, дегазируя металл, повышает плотность слитка.  [c.132]

Легирование стали осуществляют введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы (Ni, Со, Мо, Си), сродство к кислороду у которых меньше, чем у железа, при плавке и разливке практически не окисляются, и поэтому их вводят в печь в любое время плавки (обычно вместе с остальной шихтой). Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Мп, А1, Сг, V, Ti и др.), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда непосредственно в ковш.  [c.35]

Вредными примесями титана являются азот, углерод, кислород и водород. Они снижают его пластичность и свариваемость, повышают твердость и прочность, ухудшают сопротивление коррозии. При температурах свыше 500 °С титан и его сплавы легко окисляются, поглош ая водород, который вызывает охрупчивание (водородная хрупкость). При нагреве до температуры выше 800 °С титан энергично поглощает кислород, азот и водород — эта способность его используется в металлургии для раскисления стали. Титан хорошо обрабатывается давлением и сваривается, но плохо поддается резанию. Он служит легирующим элементом для других цветных металлов и стали.  [c.252]

Вакуумно-дуговой переплав (ВДП). При ВДП мало изменяется содержание основных элементов в стали, лишь несколько снижается содержание марганца и кремния в случае наличия окислов на поверхности электрода или недостаточной раскисленности металла электрода. Содержание азота и кислорода в металле в результате ВДП значительно уменьшается (табл. 128).  [c.281]

Помимо этого, на содержание азота в металле влияют также температура металла при выпуске и скорость обезуглероживания. На содержание кислорода в кислородно-конвертерном металле значительное влияние оказывает окисленность шлака и его основность. В работе [250], отмечается, что на содержание кислорода в малоуглеродистой (0,08% С) кислородно-конвертерной стали значительное влияние оказывает концентрация марганца в металле перед раскислением, что не наблюдается в мартеновском металле [251]. Это связано с тем, что в мартеновском металле до раскисления содержание марганца, как правило, не превышает 0,1%, в то время как в кислородно-конвертерном металле оно значительно выше. В кислородном конвертере создаются благоприятные условия для десульфурации, связанные с ускорением диффузионных процессов при более интенсивном перемешивании металла и шлака и высокой окислительной способностью газовой атмосферы в таком конвертере.  [c.197]


При газовой сварке металл ванны интенсивно перемешивается с газовым потоком пламени и вступает во взаимодействие с ним, в результате чего происходит окисление (соединение с кислородом), испарение отдельных компонентов (составляющих) металла, раскисление расплавленного металла, насыщение металла углеродом, водородом и др. В основном металл шва окисляется газами пламени горелки или кислородом воздуха. Растворяясь в стали, кислород вступает в соединение с легирующими компонентами, что увеличивает общее содержание кислорода в металле шва. Таким образом, избыточное содержание кислорода (в виде окислов или в чистом виде) приводит к снижению механических свойств сварного соединения. Кроме того, в процессе сварки содержание некоторых элементов (углерода, кремния, марганца и т. д.) в металле шва уменьшается, так как они выгорают. Вследствие этого также происходит - снижение механических свойств наплавленного металла. Процессы окисления и раскисления происходят одновременно и находятся во взаимосвязи. Так, например, восстановление железа из окислов в условиях сварки осуществляется в основном за счет окисления углерода, кремния, и марганца. Возможность протекания этих реакций зависит от температуры и процентного содержания элементов.  [c.90]

Иногда применяют комплексные раскислители, которые действуют более эффективно, так как полнее реагируют с кислородом, растворенным в металле, и продукты раскисления значительно быстрее выделяются из жидкой стали. В качестве комплексных раскислителей часто применяют силикомарганец (20% Мп и 10% 81) и АМС — сплав алюминия, марганца и кремния.  [c.37]

Выплавку стали производят в плавильных печах конвертерах, мартеновских, электрических и других. Чугун и стальной скрап помещают в печь и одновременно нагревают и подвергают окислению. В результате окислительного процесса в металле уменьшается содержание углерода и примесей. Углерод, соединяясь с кислородом, превращается в газ — окись углерода СО, который удаляется в атмосферу печи. Кремний, марганец, фосфор, железо и сера образуют окислы и другие соединения, не растворимые или малорастворимые в металле (SiO.,, МпО и др.). Они при благоприятных условиях плавки всплывают на поверхность расплавленного металла и вместе с флюсом образуют шлак. Образующаяся при окислении железа закись железа FeO частично растворяется в металле и этим ухудшает его свойства. Поэтому обязательным процессом, который завершает процесс получения стали, является ее раскисление (уменьшение содержания в ней кислорода). Сталь выпускают из печи в разливочные ковши, а затем разливают, в результате чего получаются слитки.  [c.44]

Раскисление стали. Увеличение содержания кислорода в металле является необходимым для ведения процесса окисления примесей в металлической ванне. Но в готовой стали кислород является вредной примесью, так как понижает механические свойства стали, вызывает ее хрупкость, особенно при высоких температурах. Поэтому в конце каждой плавки производят процесс раскисления стали, который заключается в восстановлении закиси железа, растворенной в металле. Раскисление стали можно проводить двумя способами осаждающим и диффузионным.  [c.49]

Раскисление шлака нарушает и отдаляет систему от равновесия, что вызывает последующий переход кислорода из металла в шлак. Диффузионное раскисление производится углеродом, ферросилицием (богатым), алюминием, которые вводят на шлак в измельченном состоянии. В результате диффузионного раскисления сталь не загрязняется неметаллическими включениями, но такое раскисление требует длительного времени, так как диффузионные процессы проходят медленно. Конверторную сталь этим способом не раскисляют, редко прибегают к нему в мартеновской плавке, но широко используют в электродуговой плавке.  [c.547]

Раскисление необходимо для устранения вредного влияния кислорода на свойства и качество стали. Содержание кислорода повышается по мере протекания реакций окисления примесей и достигает наибольших значений в конце окислительного периода. При этом концентрация растворенного кислорода определяется содержанием углерода в металле. При раскислении добиваются максимально возможного снижения содержания кислорода и перевода его в неактивную, связанную в прочные окислы, форму, в значительно меньшей степени оказывающую влияние на свойства стали. Процесс раскисления может осуществляться либо путем добавки элементов-раскислителей непосредственно в металл (осаждающее раскисление), либо присадкой их на шлак (диффузионное раскисление). Диффузионное раскисление, основанное на законе распределения кислорода между металлом и шлаком, ранее широко использовалось в практике проведения восстановительного периода. В последнее время применяют комбинированный способ раскисления, сочетая осаждающее раскисление с диффузионным, что обеспечивает значительное сокращение продолжительности восстановительного периода без ущерба качеству металла.  [c.319]


Величина поверхностного натяжения жидкого металла зависит от его химического состава и температуры. Наличие небольших количеств поверхностно-активных веществ может привести к значительному снижению поверхностного натяжения. Наибольшей поверхностной активностью в жидкой стали обладают кислород и сера. Поэтому различные технологические факторы, оказывающие влияние на содержание этих примесей в металле (степень раскисленности металла, состав шлака и др.), оказывают воздействие на характер переноса металла. Увеличение температуры капель приводит к снижению поверхностного натяжения сплавов на основе железа и может способствовать уменьшению размера переносимых капель.  [c.73]

Из формулы (157) вытекает, что L зависит от окисленности металла с уменьшением содержания кислорода в металле коэффициент распределения серы увеличивается, и наоборот. Это наблюдается и в производственной практике. Например, при раскислении металла всегда происходит уменьшение содержания серы в металле (обычно на 0,001—0,003%). В отличие от фосфора содержание серы в металле во время разливки стали или вовсе не изменяется, или возрастает на 0,001—0,002%. Поэтому если содержание серы в металле в конце окислительного рафинирования (перед раскислением) равно допустимому содержанию ее в готовой стали, то степень десульфурации металла можно считать достаточной.  [c.242]

Раскисление кипящей стали сводится лишь к некоторому снижению содержания кислорода в металле, сохранив его уровень выше равновесного с углеродом. Это обеспечивается обычно раскислением одним марганцем при остаточном содержании его 0,3—0,4%, редко дополнительно вводят кремний (остаточное содержание не более 0,02—0,03%) и  [c.259]

Из полученных уравнений видно, что при [% FeO] —> Ор ог О, а ДО оо, т. е. при любых малых концентрациях кислорода в газовой атмосфере жидкое железо будет его поглощать, окисляясь при этом, из-за чего в процессе сварки стали любым способом не можем избежать окисления металла шва и должны принимать дополнительные меры для снижения содержания кислорода до допустимых пределов — раскисление.  [c.322]

Плавка с полным окислением производится только для получения стали с малым содержанием углерода. Для фасонного литья чаще применяют плавку с частичным окислением и без окисления. В первом случае единственными источниками кислорода служат ржавчина или окалина железного лома и проникающий в печь воздух. При неполном окислении выгорает лишь кремний, а Р, Мп и С в большей или меньшей степени остаются в металле. После удаления окислительного шлака производится рафинирование. Такой метод даёт более полное раскисление и сокращает продолжительность плавки. Плавки без окисления производятся при восстановительном режиме на чистом по сере и фосфору и незаржавленном ломе.  [c.188]

Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]

Раскисление следует за вторым процессом наведения шлака, в котором используется так называемый белый шлак. В этом процессе порошки ферросилиция и графита добавляют в смеси с окислами кальция и алюминия. Эти добавки не влияют на химический состав металла и удаляются со шлаком. Когда наводится этот шлак, появляется характерный белый дым и после достижения заданной температуры из печи выпускается сталь. При медленной разливке шлак переходит в ковш. Если разливка стали происходит быстро, то расплавленный металл проходит через шлак сильной струей, обеспечивая хорошее перемешивание. Легирующие добавки закладывают непосредственно в ковш перед вакуумной обработкой, чтобы избежать их окисления, так как это может привести к нарушению химического состава стали. Типичный современный метод вакуумной дегазации используется в процессе прямого дугового нагрева, в котором ванна понижается так, что разливочная летка находится ниже поверхности стали. Ванна, прежде чем окончательно опустеет, попеременно опускается и поднимается, так что поток стали из ковша в ванну и обратно обеспечивает максимальную поверхность, подвергаемую вакуумной обработке. Сталь, идущая для изготовления изделий, работающих при высокой температуре, может быть раскислена кремнием, Но если требуется высокая пластичность при НИЗКОЙ температуре, она должна содержать минимальное количество кремния и для этих случаев сам процесс вакуумной дегазации может использоваться для раскисления за счет протекания реакции углерода с кислородом. Химический анализ стали в процессе плавки выполняется автоматически спектрометром с частотой замеров, обеспечивающей получение требуемого состава.  [c.63]

Плавка нержавеющих сталей сопровождается большими присадками различных ферросплавов. Во время легирования в жидкой стали протекает сложный физико-химический процесс, состоящий из нагрева и расплавления ферросплавов, растворения элементов в металле, взаимодействия легирующих с кислородом, азотом и серой металла и шлака в условиях изменения температуры системы. При обычных температурах сталеплавильного процесса элементы, содержащиеся в стали в качестве примесей или вводимые для легирования и раскисления, растворяются в чистом железе в различной степени полностью растворяются А1, Си, Мп, Ni, Со, Si, Sb, Ti, Сг, Zr, В частично V, Мо, W, Sn, Pt, С, S, Р, О, И, N, As, Se мало растворяются РЬ, Ag, Bi, Na, Li, a, Mg, Zn, d.  [c.77]


Многочисленные работы по исследованию влияния этого фактора на качество стали показали допустимость интенсификации процесса окисления углерода путем продувки ванны в течение значительной части периода чистого кипения [174—179]. Исследования влияния различных режимов продувки мартеновской ванны на качество стали 09Г2 (лист 13—40 мм) и 14ХГС (лист И—14 мм) показали, что в плавках с продувкой ванны кислородом содержание азота в металле перед раскислением оказалось несколько более низким (0,0038%), чем в сравнительных плавках с подачей кислорода только в факел [179]. Было также показано, что продолжительность послепродувоч-ного периода в 15—20 мин обеспечивает снижение избытка кислорода в металле перед раскислением до уровня, который характерен для этих же марок стали, выплавленных с подачей кислорода только в факел.  [c.163]

Многочисленные исследования в СССР и за рубежом закономерностей изменения содержания кислорода в металле в конце процесса окислительного рафинирования (перед раскислением) позволили сделать вывод (см. рис. 28), что содержание кислорода в металле перед раскислением в любом сталеплавильном агрегате главным образом зависит от концентрации углерода чем меньше углерода, тем больше кислорода в металле. Это содержание кислорода значительно выше значений, равновесных с углеродом. Поэтому если сохранить в металле это содержание кислорода, то во время затвердевания стали в кристаллизаторе машины непрерывного литья, в изложнице или литейной форме будут продолжаться реакция окисления углерода и выделение газов СО и СОг. Это допустимо только тогда, когда выплавляются кипящая и полуспокойная стали, причем интенсивность газовыделения в изложнице должна быть вполне определенной при затвердевании кипящего металла больше (но не чрезмерно), при затвердевании по-луспокойного меньше. При затвердевании слитка спокойной стали 1 видимое газовыделение, т. е. протекание реакции окисления углерода, должно быть исключено.  [c.258]

Если в стали в твердом растворе присутствует алюминий, то ввиду большого сродства его к кислороду он окисляется раньше, чем железо, давая плотную пленку жаростойких окислов, препятствующую распространению окисления вглубь металла. Однако для повышения жаростойкости котельной стали, работаюш,ей в тяжелых температурных условиях, алюминий обычно не применяется, так как он, находясь в твердом растворе, способствует выделению графита из цементита, что ухудшает механические свойства стали, в том числе и ползучепрочность. В углеродистых и молибденовых сталях содержание алюминия должно быть минимальным, менее 0,02При более высоком его содержании необходимы добавки хрома. Сталь, раскисленная алюминием, не подвержена старению по всей вероятности потому, что мельчайшие частицы окисла алюминия, распределенные в стали, механически препятствуют передвижению (диффузии) избыточных компонентов (углерода и других), стремящихся выделиться с течением времени из твердого раствора.  [c.18]

В связи с необходимостью в начале рафинировки легирования металла хромом, который затрудняет его восстановление, на практике применяют предварительное осадочное раскисление кремнием (в виде кускового 45%-ного ферросилиция и силикомарганца) и алюминием (на штангах). Пои выилавке низкоуглеродистой нержавеющей стали (С 0,03%), когда содержание кислорода в металле, а также в остатках иеудаленного шлака особенно велико, количество вводимых кремния и алюминия увеличивают и, кроме того, присаживают марганец и силикокальций. Дальнейшее раскисление металла проводится диффузионным методом через шлак с помощью порошков 75%-ного ферросилиция, силикокальция, а в ряде случаев и алюминия.  [c.70]

Плавки ведут, как правило, на шихте из чистых углеродистых отходов, а также специальной паспортной болванки с содержанием серы и фосфора не более 0,010% каждого. Получение низкого содержания кислорода в металле достигается за счет предварительного осадочного раскисления стали сплавами марганца (на 0,25%) и кремния (на 0,10%), проплавления феррохрома под известково-глиноземистым шлаком с последующей его заменой на нзвестково-флюориговыи, систематического раскисления шлака порошками 75%-ного ферросилиция, силикокальция, кокса (при низком содержании углерода — древесного угля), применения электромагнитного перемешивания, продувки металла аргоном в печи перед выпуском или, что лучше, в ковше через пористую пробку.  [c.180]

Б. В. Линчевским было установлено, что в тигле из А О ) минимальное значение кислорода (0,006%) в стали Х17 достигается при давлении 2,66 hIm" (0,02 мм рт. ст.), в тигле из MgO — 0,002% О — при давлении 133 я/ж (1 мм рт. ст.), а в тигле из ZrOa —0,003% О —при давлении 133 н1м (1 мм рт. ст.). Во всех плавках при давлении 6700 н м (50 мм рт. ст.) содержание кислорода увеличивалось. С повышением температуры содержание кислорода в металле росло, так как возрастала растворимость кислорода в железо-хромистых расплавах и повышалось воздействие горячего металла на огнеупорную футеровку тигля. Кинетика обезуглероживания в ВИП характеризуется линейной зависимостью скорости реакции от концентрации углерода. С понижением давления над металлом скорость раскисления и обезуглероживания возрастает например в стали Х17 (тигель из ZrOa) константа скорости возросла с 5,25-10 до 7,05-10 Imuh при изменении давлений с 133,3 до 2,66 н1м (с 1 до 0,02 мм рт. ст.).  [c.206]

Восстановительный период плавки. После скачивания окислительного шлака начинается восстановительный период плавки. Задачами восстановительного периода плавки являются раскисление металла, удаление серы,коррек-тирование химического состава стали, регулирование температуры ванны, подготовка жидкоподвижного хорошо раскисленного шлака для обработки металла во время выпуска из печи в ковш. Раскисление ванны, т. е. удаление растворенного в ней кислорода, осуществляют присадкой раскислителей в металл и на шлак. В начале восстановительного периода металл покрывается слоем шлака. Для этого в печь присаживают шлакообразующие смеси на основе извести с добавками плавикового шпата, шамотного боя, кварцита. В качестве раскислн-телей обычно используют ферромарганец, ферросилиций, алюминий. При введении раскислителей происходят следующие реакции  [c.185]

Технология плавки в кислой электропечи имеет следующие особенности. Окислительный период плавки непродолжителен, кипение металла идет слабо, так как кремнезем связывает FeO в шлаке и тем самым скорость перехода кислорода в металл для окисления угле-)ода снижается. Кислый шлак более вязкий, он затрудняет кипение. Ллак наводят присадками песка, использованной формовочной земли. Известь присаживают до содержания в шлаке не более 6—8 % СаО. Раскисление кислой стали проводят, как правило, присадкой кускового ферросилиция. Частично сталь раскисляется кремнием, который восстанавливается из шлака или из футеровки по реакциям (SiOj)-l-2Fe=2(FeO)-l-[Si] (SiOj)+2[ ]=2 O + [Si]. В отличие от основного процесса при кислом ферромарганец присаживают в конце плавки в раздробленном виде в ковш. При таком способе усваивается до 90 % марганца. Конечное раскисление проводят алюминием.  [c.189]

Вакуумная обработка шарикоподшипниковой стали ШХ15 до ее раскисления кремнием и алюминием позволяет уменьшить содержание кислорода в металле на 40%, снизить количество неметаллических включений примерно в два раза и понизить концентрацию водорода на Ь0%.  [c.345]

Снижение содержания кислорода в металле или перевод его в менее вредное состояние называют раскислением. О лшко некоторые элементы-раскислители способствуют снижению содержания или вредного влияния также азота и серы. Поэтому в общем случае под раскислением следует понимать процесс снижения содержания в стали или вредного влияния на ее свойства кислорода, азота и серы при помощи какого-либо одного или нескольких элементов-раскислителей, вводимых в металл после окислительного рафинирования.  [c.257]


В обычных процессах плавки стали металл во время вакуумирования и продувки инертным газом постоянно контактирует с футеровкой ковша или агрегата и шлаком, состоящими из различных оксидов. В этих условиях повышение раскислительной (восстановительной) способности углерода приводит не только к раскислению металла, но и к восстановлению компонентов оксидных фаз, например к смещению реакции [Si] +2[0] = (SIO2) влево в результате снижения [О] при углеродном раскислении. Поэтому на остаточное содержание кислорода в металле начинает влиять реакция восстановления оксида из оксидной фазы. В результате степень раскисле-  [c.273]

С повышением температуры сварочной ванны скорость и полнота протекания этих реакций увеличиваются. Как видно из схемы, образующаяся закись железа РеО растворяется в жидком металле. При последующем остывании металла шва находящаяся в нем закись железа вступает в реакцию с другими элементами, содержащимися в расплавленном металле, такими, как 81, Сг, Мп, образуя чистое железо и окислы этих элементов, которые могут оставаться в металле шва. Поэтому при сварке сталей, содержащих повышенное количество кремния, хрома и марганца, не рекомендуется поль-воваться покрытиями или флюсами с высоким содержанием окислов кремния и марганца, так как при этом увеличивается содержание кислорода в металле шва, снижающего его ударную вязкость. Основные электродные покрытия и флюсы дают и основные шлаки, содержащие преимущественно окись кальция (СаО), которая не отнимает кислород от окислов металлов. Поэтому в покрытия основного типа для раскисления наплавленного металла вводятся ферросплавы ферросилиций или ферротитан. В электродных покрытиях этого типа основными реакциями раскисления будут  [c.58]

В дуговых основных печах малой и средней вместимости, не имеющих средств внепечной обработки, восстановительный период используют для раскисления металла, удаления серы до содержания < 0,010 %, легирования ванны, доведения химического состава стали до заданного, регулирования температуры металла, снижения в стали неметаллических включений и получения жидкоподвижного основного безжелезистого шлака. В восстановительный период раскисление металла, т. е. удаление растворенного в нем кислорода, осуществляют присадкой веществ — раскислителей (кусковых) непосредственно в металл (осадочное раскисление) или на шлак (порошкообразных) для снижения в нем содержания монооксида железа (диффузионное раскисление). Реакции раскисления металла кусковыми ферромарганцем, ферросилицием, алюминием и др. протекают в глубине расплава и зависят от плотности раскислителя и размеров его кусков.  [c.128]

В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]

Кислород — ухудшает пластические свойства стали как в холодном, так и в горячем состоянии. Он может растворяться в стали в очень небольших количествах. В плохо раскисленной стали кислород образует включения закиси железа. Взаимодействуя с марганцем или кремнием, он образует оксид марганца МпО, диоксид кремния SiOa или силикат марганца (МпО)2-(ЗЮ2)з- Оксиды имеют меньшую плотность, чем железо, всплывают при застывании слитка и переходят в шлак. Не успевшие всплыть до перехода металла в твердое состояние оксиды образуют неметаллические включения, которые вызывают подобно сере красноломкость стали. Очень твердые частицы оксидов марганца, кремния и алюминия ухудшают обрабатываемость резанием, вызывая быстрое затупление режущего инструмента. Крупные неметаллические включения могут привести к снижению прочности детали, особенно при наличии концентраторов напряжений.  [c.95]

Раскисление металла в вакуумной индукционной печи осуществляют сильными раскислителями (алюминием, церием и их сплавами), так как марганец и кремний не могут раскислить сталь, содержащую углерод. Введением алюминия илй" алюминия совместно с церием можно достичь содержания кислорода в стали Х18Н9Т около 0,003%.  [c.206]

Известно, что слитки стали, легированной хромом, и особенно алюминием и титаном, получаются с плохой поверхностью вследствие заворотов образующейся корки окислов. Образование корки на поверхности металла в изложнице связано с окислением стали атмосферным кислородом, а также с образованием и всплыванием нитридов титана и алюминия и продуктов раскисления стали, с окислением струи при выпуске стали в ковш и разливке металла, с инжектированием при этом воздуха в металл.  [c.227]


Смотреть страницы где упоминается термин Кислород в металле и раскисление стали : [c.331]    [c.259]    [c.325]    [c.165]    [c.261]    [c.298]    [c.17]    [c.130]    [c.256]   
Смотреть главы в:

Металлургия стали  -> Кислород в металле и раскисление стали



ПОИСК



Кислород

Кислород в металлах

Кислород в стали

Раскисление

Раскисление металла

Раскисление металла стали

Раскисление стали



© 2025 Mash-xxl.info Реклама на сайте