Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КИСЛОРОД Свойства

При использовании температурного фактора как средства повышения скорости коррозии при испытании необходимо учитывать характер протекающего процесса. Известно, что скорость электродных реакций с повышением температуры повышается, но одновременно температура влияет и на ряд других факторов — растворимость кислорода, свойства защитных пленок на металлах и т. п. Необходимо иметь в виду, что при повышении температуры скорость кислородной деполяризации возрастает лишь до определенного предела (около 60 °С). При дальнейшем повышении температуры резко уменьшается растворимость кислорода, что приводит к снижению скорости коррозии.  [c.19]


Газопламенный нагрев. Нагрев этим способом предусматривает использование сварочных и специальных многопламенных газовых горелок. Принцип действия всех газовых нагревателей заключается в том, что тепло выделяется при сгорании смеси горючего газа с воздухом или кислородом. Свойства горючих газов, применяемых при газопламенном нагреве, указаны в табл. XXV. . В табл. ХХУ.8 приведены технические данные по многопламенным кольцевым горелкам конструкции Мосэнергомонтаж.  [c.680]

Керосин — Температура кипения 69 К-захват — Определение 75 Кислород — Свойства 5 — Физические константы 37 Кислотоупорные замазки 325 Кислотоупорные плитки 325 Кобальт — Растворимость в химических средах 70 — Свойства 5  [c.543]

Сварочное пламя образуется при сгорании выходящей из мундштука горелки смеси горючего газа (или паров горючей жидкости) с кислородом. Свойства сварочного пламени зависят от того, какое горючее подается в горелку и при каком соотношении кислорода и горючего создается газовая смесь. Изменяя количество подаваемого в горелку кислорода и горючего газа, можно получить нормальное, окислительное или науглероживающее сварочное пламя.  [c.100]

Образованные азотом и кислородом хрупкие неметаллические включения ухудшают свойства металла.  [c.188]

Рис. 158. Влияние примесей внедрения кислорода (а) и азота (б) иа вязкие свойства железа Рис. 158. Влияние примесей внедрения кислорода (а) и азота (б) иа вязкие свойства железа
Из сказанного следует, что наличие водорода, азота и кислорода в металле ухудшает его свойства.  [c.190]

Радикальным средством уменьшения указанных элементов и неметаллических включений в металле является выплавка или разливка металла в вакууме. Вакуумированный металл обладает более высокими свойствами вследствие высокой чистоты по неметаллическим включениям и отсутствия (практически) растворенных атомов водорода, азота и кислорода.  [c.190]

Бессемеровский металл вследствие повышенного содержания газов в первую очередь азота отличается от мартеновского большей прочностью, но меньшей пластичностью, склонностью к старению, большей загрязненностью неметаллическими включениями, Вследствие того что качество бессемеровского металла невысокое, этот процесс отживает и иа смену ему приходит так называемый кислородно-конверторный способ, отличающийся тем, что вместо воздуха используют технически чистый кислород с очень малым загрязнением азотом (продувка обычно производится сверху под углом к зеркалу расплавленного металла). В результате этого содержание азота в металле будет низким. Такой металл называется конверторным, и по свойствам он практически не отличается от мартеновского.  [c.191]


Исследование механических свойств сталей показало, что их пластические и вязкие свойства, а отсюда и возможность упрочнения зависят от чистоты стали, содержания примесей внедрения (азот, кислород, водород) и неметаллических включений. Примеси внедрения, т. е. элементы, образующие с железом твердые растворы внедрения, создавая местные искажения, затрудняют движение дислокаций. Пластическая деформация при этом затруднена, и в местах скопления неподвижных дислокаций облегчается зарождение микротрещин.  [c.396]

Рис. 435. Влияние кислорода на механические свойства бериллия Рис. 435. <a href="/info/469779">Влияние кислорода</a> на механические свойства бериллия
На свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей (вредных — серы, фосфора, кислорода, азота, водорода полезных — кремния, марганца и др.). Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор из металлического лома — хром, никель и др. в процессе раскисления — кремний и марганец.  [c.14]

Третий этап (завершающий) — раскисление стали — заключается в восстановлении оксида железа, растворенного в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород — вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами осаждающим и диффузионным.  [c.31]

Кислый мартеновский процесс. Этим способом выплавляют качественные стали. Поскольку и печах с кислой футеровкой нельзя навести основной шлак для удаления фосфора и серы, то применяют шихту с низким содержанием этих составляющих. Стали, выплавляемые в кислых мартеновских печах, содержат меньше водорода н кислорода, неметаллических включений, чем выплавленные в основной печи. Поэтому кислая сталь имеет более высокие механические свойства, особенно ударную вязкость и пластичность, и ее используют для особо ответственных деталей коленчатых валов крупных двигателей, роторов мощных турбин, шарикоподшипников.  [c.35]

Зона 2, имеющая самую высокую температуру н обладающая восстановительными свойствами, называется сварочной, или рабочей, зоной. В зоне 3 (факеле) протекает вторая стадия горения ацетилена за счет атмосферного кислорода  [c.207]

Трудности при сварке тугоплавких металлов Ti, Zr, Mo, Nb и других связаны с тем, что они при нагреве интенсивно поглощают газы — кислород, водород и азот. При этом даже незначительное содержание газов приводит к резкому снижению пластических свойств этих металлов.  [c.237]

Перепассивация при адсорбционном характере пассивности обусловлена ухудшением защитных свойств адсорбционного слоя кислорода.  [c.314]

Электродуговая сварка основана на использовании теплоты электрической дуги для расплавления металла. Для защиты расплавленного металла от вредного действия окружающего воздуха на поверхность электрода наносят толстую защитную обмазку, которая выделяет большое количество шлака и газа, образуя изолирующую среду. Этим обеспечивают повышение качества металла сварного шва, механические свойства которого могут резко ухудшиться под влиянием кислорода и азота воздуха.  [c.54]

Кислород. Свойства кислорода. По ОСТ НКТП 4313 технический кислород должен иметь чистоту 1 сорт — 99о/о, 11 сорт — 98 /о. Удельный вес кислорода при 0° С и 760 мм рт. ст. - = 1,4289 kz m критическая температура tup = —118,8 С критическое давление = 51,35 ama. При атмосферном давлении кислород сжижается в прозрачную голубоватую жидкость при t = —182,95° С. Вес жидкого кислорода при этих условиях равен 1,13 кг л. При испарении 1 л жидкого кислорода даёт 790 л газообразного (при 0 С и 760 М.М рт. ст.) при сжижении 1 м газообразного кислорода образует 1,265 л жидкого.  [c.385]


Скорость электродных реакций с повышением температуры увеличится, но температура одновременно влияет на ряд других факторов (растворимость кислорода, свойства защитных пленок на металл и т. д.). Необходимо иметь в виду, что температура увеличивает скорость кислородной деполяризации лишь до определенного предела ( 60°С). Дальнейшее повышение температуры резко уменьшает растворимость кислорода, что приводит к обратным рзультатам, т. е. к уменьшению скорости коррозии.  [c.50]

Если же газ, например, кислород, диссоциирует при высокой температуре, то образуется реагирующая смесь из молекулярного и атомарного кислорода, свойства которой определяются степенью диссоциации, т. е. концентрацией компонентов. Поскольку концентрация зависит от температуры и давления, то смесь не подчиняется уравнениям совершенного газа, хотя ее компоненты можно рассматривать как совершенные газы. При течении диссоциирующего газа степень диссоциации будет изменяться, т. е. будет наблюдаться массообмен, который сопровождается поглощением или выделением теплоты диссоциации.  [c.197]

При использовании температурного фактора как. средства повышения скорости коррозии необходимо учитывать характер протекающего процесса. Скорость электродных реакций с повышением тёмпературы увеличивается, однако температура влияет и на ряд других факторов— растворимость кислорода, свойства защитных пленок на металлах и т. п. Необходимо иметь в виду, что в открытых системах скорость кислородной деполяризации возрастает при увеличении температуры лишь до определенного предела ( 60°С)- Дальнейшее ее повышение резко уменьшает растворимость кислорода, что приводит к обратным результатам, т. е. к уменьшению скорости коррозии.. Для процессов коррозии, протекающих с водородной деполяризаи ией (кислые электролиты), этих ограничений не существует и температуру можно повышать вплоть до температуры кипения. При этоад рекомендуется учитывать изменение температурного коэффициента процесса.  [c.10]

Добавки в углекислый газ аргона (иногда в эту смесь вводят кислород) изменяют технологические свойства дуги (глубину проплавдения и форму шва, стабильность дуги и др.) и позволяют регулировать концентрацию легирующих элементов в металле шва.  [c.225]

Наличие такой полосчатой структуры вызывает сильную анизотропию свойств, т. е. различие свойств образцов, вырезанных вдоль и поперек прокатки. В основном снижение так называемых поперечных свойств проявляется на характеристиках, связанных с заключительной стадией деформации (ударная вязкость, относительное сужение), другие механические свойства менее чувствительно реагируют на полосчатость. Анизотропию свойств характеризуют отношением ХпопДпрод, где X — свойство металла в (поперечном и продольном наяравле-ниях. Обычно ударная вязкость в поперечном направлении вдвое меньше, чем в продольном (соответственно коэффициент анизотроппи 0,5) путем повышения чистоты металла по сере и кислороду, используя усовершенствованные методы выплавки пли уменьшая строчечность совершенствованием методов прокатки ( поперечная прокатка ), коэффициент анизотропии ударной вязкости повышается до 0,7—0,8.  [c.191]

Таким образом, сталь одной и той же марки может отличаться по примесям. учитываемых, а часто и не учитываемых ГОСТами и техническими условиями, а это может сильно повлиять на свойства. Особенно hjh,ho влияют примеси внедрения (водород, азот, кислород и углерод), а также типичные примеси, загрязняющие металл, — сера и фосфор. Безусловно, вредны многие цветные примеси.  [c.193]

Титановые сплавы обладают очень низкими антифрикционными свойствами н не пригодны для изготовления трущихся деталей. Для повышения износостойкости титановые сплавы следует подвергать химико-термической обработке — цементации или лучше азотироваиию. Азотирование проводят при 850—950°С в течение 15—25 ч в диссоциированном аммиаке или сухом, очищенном от кислорода азоте. В результате азотирования получается тонкий (около 0,1 мм) слой, насыщенный азотом с HV 1000—1200.  [c.519]

Бериллий. Поскольку такое свойство атомов, как поперечное сечение захвата, не зависит от состояния, в каком находится элемент, то Осри. ктнн в ядерной промышленности применяют в металлическом виде и в виде соединений с кислородом, углеродом и водородом (оксиды, карбиды н [идриды бериллия).  [c.558]

Наличие кислорода улучшает свойства бериллия (рис. 435), а для ССХ ipyriix металлов кислород — вреднейшая примесь.  [c.602]

Влияние азота, кислорода и водорода. Эти элементы присутствуют в сплавах или в составе хрупких неметаллических включений, например оксидов РеО, SiOj, Al. O ,, нитридов Fe4N, или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Неметаллические включения служат концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).  [c.14]

Осаждающее раскисление осуществляют введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы (Мп, Si, А1 и др.), которые в данных условиях обладают большим сродством к кислороду, чем <слезо. В результате раскисления восстанавливается железо и образуются оксиды МпО, SiOi, Al.,0 , и другие, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть их может остаться в стали, что понижает ее свойства.  [c.31]

В результате ЭШП содержание кислорода в металле снижается в 1,5—2 раза, понижается концентрация серы, в 2—3 раза уменьшается содержание неметаллических включений, они становятся мельче и равномерно распределяются в объеме слитка. Слиток отличается плотностью, однородностью, хорошим качеством поверхности благодаря наличию шлаковой корочки 5, высокими механическими и эксплуатационными свойствами стали и сплавов. Слитки выплавляют круглого, квадратного, прямоугольного сечения массой до ПО т. Наиболее широко ЭШП используют при выплавки высококачественных сталей для шарикоподшипников, жаропрочных сталей для дисков и лопаток турбин, валов компрессоров, авиацпониых конструкций.  [c.47]


В перегреной сварочной ванне протекает ряд металлургических процессов испарение или окисление (выгорание) некоторых легирующих элементов, например углерода, марганца, кремния, хрома и др., и насыщение расплавленного металла кислородом, азотом и водородом из окружающего воздуха. В результате возможно изменение состава сварного шва по сравнению с электродным и основным металлом, а также понижение его механических свойств, особенно вследствие насыщения шва кислородом. Для обеспечения заданных состава и свойств шва в покрытие вводят легирующие элементы и элемеиты-раскислители.  [c.190]

Углекислый газ и пары воды при высоких температурах окисляют металл, поэтому эту зону называют окислительной. Газосварочное пламя называется нормальным, когда соотношение гаяов О2/С2Н2 1. Нормальным пламенем спаривают большинство сталей. При увеличении содержания кислорода (Oj/ aHj > I) пламя приобретает голубоватый оттенок и имеет заостренную форму ядра. Такое пламя обладает окислительными свойствами и может быть использовано только при сварке латуни. В этом случае избыточный кислород образует с цинком, содержащимся в латуни, тугоплавкие оксиды, пленка которых препятствует дальнейшему испарению цинка.  [c.207]

Молибден и ниобий и их сплавы более чувствительны к насыщению газами, чем титан, особенно кислородом. При содержа-НИИ кислорода более 0,01 % их пла- / стические свойства резко снижа-  [c.237]

Металлизация — покрытие посредством распыления (пульверизации) расплавленного металла — применяется для ремонта и восстановления изношенных деталей, исправления брака, повышения жароупорности дета-дей(например, покрытие алюминием), придания антикоррозионных свойств (оцинковка). Процесс в основном протекает следующим образом. К соплу аппарата подается проволока из металла, служащего материалом для покрытия, к которой подводятся кислород и ацетилен, дающие при горении высокую температуру (до 3000° С), проволока плавится расплавленный металл распыляется сжатым воздухом, поступающим к соплу под давлением до 4 ат (392,4 кн1м ), с силой ударяется о поверхность детали и прочно к ней пристает.  [c.28]

Всего в ОГ обнаружено около 280 компонентов. По своим химическим свойствам, характеру воздействия на организм человека вещества, содержащиеся в отработавших и картерных газах, подразделяются на несколько групп. В группу нетоксичных веществ входят азот, кислород, водород, водяной пар, а также углекислый газ. Группу токсичных веществ составляют окись углерода СО, окислы азота N0 , многочисленная группа углеводородов С Н 1, включающая парафины, олефины, ароматики и др. Далее следуют альдегиды Я СНО, сажа. При сгорании сернистых топлив образуются неорганические газы - сернистый ангидрид ЗОз и сероводород НзЗ.  [c.5]

Прочность и пластичность сложнолегированных сплавов (склонных к внутреннему окислению) под действием натрия, содержащего кислород, снижаются, в то время как эти свойства у относительно чистых материалов — никеля и железа-арм-ко — практически не изменяются. Для объяснения четвертого эффекта — усиления термического переноса массы загрязнениями щелочных -металлов кислородом — выдвинуты две гипотезы  [c.146]

Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в ч. I. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нес <ольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость (рис. 263), что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций.  [c.373]


Смотреть страницы где упоминается термин КИСЛОРОД Свойства : [c.428]    [c.160]    [c.45]    [c.108]    [c.289]    [c.296]    [c.341]    [c.364]    [c.138]    [c.533]    [c.60]    [c.134]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.405 ]

Справочник машиностроителя Том 2 (1955) -- [ c.19 ]



ПОИСК



Влияние кислорода на свойства сплавов

Ингибиторы, состав и свойства кислород

Кислород

Кислород 5—197 — Определение свойства

Кислород Тепловые свойства

Кислород термодинамические свойства

Кислород — Свойства 5 — Физические константы

Кислород, основные свойства

Кислород, основные свойства расход

МЕТОДЫ НАНЕСЕНИЯ, СВОЙСТВА, ПРИМЕНЕНИЕ ПОКРЫТИЙ Солнцев, В. М. Минаев, В. М. Тюрин, С. С. Казаков. Исследование диффузии кислорода в покрытиях методом активационной . авторадиографии

ПЛАМЯ СМЕСЕЙ ГОРЮЧИХ ГАЗОВ С КИСЛОРОДОМ Горение и химические свойства пламени

Получение и свойства покрытий из металлов с большим сродством к кислороду. Х.-Д. Стеффене

Свойства газообразного и жидкого кислорода

Свойства кислорода и способы его получения

Термодинамические свойства жидкого кислорода Опытные р, v, Т-данные для жидкого кислорода и их экстраполяция по давлению

Термодинамические свойства жидкого кислорода в состоянии насыщения (по давлениям)

Термодинамические свойства жидкого кислорода в состоянии насыщения (по температурам)

Термодинамические свойства кислорода в однофазной области

Уравнение состояния для кислорода и определение его калорических свойств



© 2025 Mash-xxl.info Реклама на сайте