Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионная стойкость стали в электролитах

Р настоящее время в качестве ингибиторов коррозии и коррозионно-механического разрушения используют тысячи различных химических веществ [39]. По механизму действия их можно разделить на анодные, катодные и ингибиторы смешанного типа, в зависимости от того, на какие коррозионные процессы они оказывают максимальное влияние. Для повышения коррозионной стойкости сталей в нейтральных электролитах используют обычно неорганические вещества пассивирующего действия, влияющие на анодные процессы, К ним относятся хроматы, полифосфаты, бензоат натрия, нитраты и пр. Для кислых сред используют преимущественно органические вещества адсорбционного действия, тормозящие катодные процессы. К таким ингибиторам относятся катапин А, катапин К, КПИ-1 ОБ-1, ХОСП-10 и др. [39]. Однако ингибиторы коррозии не всегда могут защищать металл от наводоро-, живания, часто влияющего на его прочность.  [c.111]


На коррозионную стойкость железоуглеродистых сплавов перечисленные компоненты влияют по-разному. Из всех примесей, по-видимому, лишь сера увеличивает скорость коррозии сталей в атмосфере, поскольку участки защитной пленки вблизи сернистых включений оказываются более слабыми и проницаемыми для электролита, который, взаимодействуя с сульфидами, обусловливает появление сероводорода — весьма агрессивного компонента среды. Фосфор, медь и хром повышают коррозионную стойкость сталей в атмосферных условиях кремний, марганец и никель в небольших количествах практически не влияют на коррозионное поведение сталей.  [c.28]

В соответствии с гипотезой обеднения границ зерен хромом при сенсибилизации сталь становится склонной к мел кристаллитной коррозии в том случае, когда концентрация хрома на границах снижается до уровня, не обеспечивающего коррозионную стойкость материала в данной среде. Очевидно, что предельно низкой концентрацией хрома может быть 12%, ниже которой сталь теряет термодинамическую устойчивость в электролитах. Около карбида хрома, выделяющегося на границе аустенитного зерна, концентрация хрома должна быть достаточной для протекания реакции выделения карбида, что вытекает из соотношения (4). Так как растворимость карбида хрома с понижением температуры уменьшается, то и концентрация хрома, которая необходима для выделения карбида хрома в этих условиях, также уменьшается.  [c.12]

Чем чище металлы, тем больше их сопротивление коррозии. Например, алюминий с 0,01 % примесей более стоек против коррозии в атмосферных условиях, чем технический алюминий с 0,05 о примесей. Чистые металлы корродируют в меньшей степени, чем их сплавы. Посторонние включения в значительной степени понижают коррозионную устойчивость металлов и сплавов. Степень влияния легирующих примесей на сопротивление металлических сплавов коррозии зависит не только от характера этих примесей, но и от их количества. Например, введение меди и хрома повышает коррозионную устойчивость стали в атмосфере однако если медь вводится в незначительном количестве, то только большое содержание хрома ( 12%) делает сталь нержавеющей в атмосфере и других промышленных средах. Значительное влияние на коррозионную устойчивость оказывает структура. Наибольшей коррозионной устойчивостью обладают однофазные сплавы (чистые металлы, твердые растворы, химические соединения). Многофазные сплавы (механические смеси) корродируют быстрее. Однако известны случаи, когда многофазные сплавы обладают высокими антикоррозионными свойствами (например, силумины). Чем чище поверхность металлов и сплавов, тем их сопротивление коррозии больше. Напряженность поверхности металла повышает его коррозию металл, подвергнутый деформации, корродирует больше. Влияние внутренних факторов усиливается или уменьшается в зависимости от корродирующей среды. Например, изменение содержания углерода в стали незначительно влияет на ее стойкость против коррозии в атмосфере и слабых электролитах в кислых же средах повышение содержания углерода заметно снижает коррозионную стойкость стали.  [c.247]


Влияние внутренних факторов усиливается или ослабляется в зависимости от состава коррозионной среды. Например, изменение содержания углерода в стали незначительно влияет на ее стойкость против коррозии в атмосфере и слабых электролитах, в то время как в кислых средах повышение содержания углерода заметно снижает коррозионную устойчивость стали. В ряде случаев металлы сами хорошо сопротивляющиеся коррозии, быстро корродируют, если находятся в контакте с другими металлами и сплавами. Например, алюминий, хорошо сопротивляющийся коррозии вследствие образования на его поверхности плотной окисной пленки, быстро корродирует нри работе в контакте с дуралюмином. При испытании на коррозионную устойчивость определяют скорость коррозии. В зависимости от скорости коррозии металлы подразделяют на несколько групп.  [c.183]

Рассмотренные стали обладают примерно одинаковой коррозионной стойкостью в атмосфере и водных средах. Коррозионная стойкость снижается при наличии в составе стали неметаллических включений в виде оксидов, сульфидов, а также при наличии на поверхности прокатной окалины. Во всех случаях применения требуется защита от коррозии окраска, эмалирование, ингибиторы, металлические защитные покрытия. Наиболее эффективным способом защиты в атмосферных условиях для ответственных конструкций является горячее алюминирование или металлизация с последующей покраской. В растворах электролитов и в природных водах эффективна комплексная защита лакокрасочными покрытиями в сочетании с катодной защитой.  [c.67]

Испытания начинают с операции смачивания, которая длится 25 мин, т. е. смачивающий раствор выдерживается это время в камере. Затем, как показано на графике (рис. 46,6), влажность воздуха попеременно уменьшается и увеличивается в коррозионной камере. Последующие смачивания производят в моменты достижения 100%-ной относительной влажности, но не чаще чем через 25 ч. Изменение влажности регулируют так, чтобы в течение каждых восьми часов три часа образцы высушивались. Смачивание образцов, кроме произведенного в начале опыта, происходит трехкратным введением электролита в камеру на 5 мин непосредственно из сосуда 5 через отверстие в дне камеры. Образцы в камере располагают вертикально или под углом в 15°. Сравнение результатов лабораторных испытаний с результатами, полученными при испытании аналогичных образцов в естественных условиях, показало, что этот метод позволяет сравнивать коррозионную стойкость низколегированных сталей различного состава, на которых в процессе эксплуатации образуются продукты коррозии, не оказывающие защитного действия. Коррозионные потери за 20 суток испытания в этой камере соответствуют потерям при испытании в естественных условиях промышленной атмосферы в течение трех лет, а в морской — в течение 2,5 лет.  [c.82]

Электроды многих ХИТ содержат активную массу, которая состоит из активного вещества (окислитель или восстановитель), участвующего в электродной реакции, а также добавок, повышающих электропроводность, связующих веществ, ингибиторов коррозии и др. Важную роль играет выбор конструкционных материалов для ХИТ, которые должны иметь высокую коррозионную стойкость в контакте с активными массами и электролитом, необходимые механические свойства, электропроводность и др. Корпуса ХИТ изготавливают из стали или различных диэлектриков. Однако для свинцовых кислотных аккумуляторов невозможно применение даже корро-зионно-стойких нержавеющих сталей из-за резкого усиления саморазряда свинцового электрода. Их корпуса изготавливают из эбонита, полипропилена, стекла и др.  [c.108]

К недостаткам углеродистой стали относятся невозможность сочетания прочности и твердости с пластичностью потеря твердости и режущей способности при нагревании до 200° С и потеря прочности при высокой температуре низкая коррозионная стойкость в среде электролита, в агрессивных средах, во влажной атмосфере и при высоких температурах высокий коэффициент линейного расширения увеличение массы изделия, удорожание их стоимости.  [c.33]


Высокохромистая сталь (25—30% Сг) обладает большой коррозионной стойкостью и не растворяется в большинстве электролитов. Однако при больших плотностях тока пассивная пленка исчезает, и в растворах хлористых солей процесс растворения стали идет с удовлетворительной скоростью. Эти наблюдения положены в основу метода, разработанного Н. А. Савериной [31.  [c.160]

Структура металлов и сплавов в большинстве случаев неоднородна и состоит из двух фаз (например, феррита и цементита). При погружении такого сплава в электролит отдельные фазы (зерна) его будут иметь различные потенциалы, а так как эти зерна соединены друг с другом через массу металла, то сплав будет представлять собой множество гальванических микропар. Схематически явление электрохимической коррозии двухфазного сплава изображено на рис. 86. Здесь темными участками обозначена фаза с более высоким потенциалом (катод). Черными стрелками показан переход частиц анода (светлые участки) в раствор эквивалентный переход электронов анода к катоду показан белыми стрелками. Таким образом, коррозия металлов в электролитах определяется электрохимической гетерогенностью прилегающего к электролиту слоя сплава и склонностью его фаз к ионизации. Из сказанного следует, что чистые металлы и однофазные сплавы должны иметь большую коррозионную стойкость, чем сплавы, состоящие из смеси фаз. Опыт подтверждает это например, сталь, закаленная на мартенсит, корродирует значительно меньше, чем та же сталь после отжига или отпуска (состояние перлита, сорбита, троостита). Однако и однофазные металлы имеют дефекты структуры дислокации, субзерна, загрязнения и примеси, обладающие различными значениями электродного потенциала то же относится и к наклепанным участкам металла. Все это определяет электрохимическую гетерогенность металлов. Поэтому электрохимическая коррозия может наблюдаться также и у однофазных металлов.  [c.152]

Рекомендуется также изолировать ячейку от контрольных приборов, чтобы защитить последние от коррозионного действия паров и растворов. Все детали прибора, находящиеся в контакте с электролитом, должны быть изготовлены из материалов с высокой коррозионной стойкостью (нержавеющей стали, фторопласта и др.).  [c.33]

А/м соответственно. В потоке природных электролитов, когда наблюдается коррозионно-эрозионное разрушение металлов, 1з железа, алюминия и меди достигает 1 А/м . Титан, как и нержавеющие стали, имеет высокую стойкость в потоке среды.  [c.60]

В АзИНЕФТЕХИМ были проведены исследования сравнительной коррозионной стойкости стали в очищенной хозяйственно-бытовой сточной воде и в природной воде аналогичного минерального состава. Исследования проводились снятием гальваностатических кривых в автоклаве. Материалы по определению стойкости металла по кинетическим характеристикам [216] подтверждают возможность их использования для расчета скоростей коррозии. Однако необходимо учитывать, что поляризационные кривые, снимаемые сразу после установления стационарного потенциала, характеризуют только начальную скорость коррозии. Не отражая действительной скорости, устанавливающейся после появления оксидных пленок, они тем не менее позволяют дать ориентировочную сравнительную оценку коррозионной агрессивности исследуемых электролитов.  [c.218]

Большую опасность представляет питтинговая (точечная) коррозия, характерная для пассивного состояния металлов. Питтинговая коррозия протекает в растворах при наличии способствующих пассивации окислителей (например, кислорода) и депассива-торов (ионов хлора и др.). Дно пнттинга является анодом и корродирует с большой скоростью, так как остальная намного большая поверхность металла запассивирована и катодна по отношению к ииттингу. Стойкость металлов к питтинговой коррозии зависит от природы металла, состояния его поверхности, состава и те.мпера-туры электролита, активности окислителя и депасснватора. Особенно склонны к питтинговой коррозии коррозионно-стойкие стали. Повышает стойкость коррозионно-стойких сталей к питтинговой коррозии легирование молибденом и некоторые металлургические и технологические мероприятия.  [c.8]

Важным признаком коррозионной усталости является практически полное отсутствие связи между механическими характеристиками при статическом и циклическом нагружениях в воздухе и условным пределам коррозионной усталости. Прямой связи нет и между коррозионной усталостью и коррозноннш стойкостью металлов в ненапряженном состоянии. Легирование сталей хромом, никелем и другими элементами (не переводя их в класс коррозионно-стойких сталей) на несколько порядков повышает их коррозионную стойкость в нейтральных электролитах, но не оказывает существенного влияния на коррозионно-усталостную прочность [481. Обычно более прочные металлы (структуры) в большей степени подвержены коррозионной усталости (см. рис. 27). При коррозионной усталости термическая обработка не дает повышения усталостной прочности.  [c.81]

В отдельных случаях химическое травление структуру не выявляет или выявляет ее плохо. Это наблюдается главным образом тогда, когда исследуемые металлы или сплавы обладают высокой коррозионной стойкостью. В таких случаях используют избирательное воздействие реактива на поверхность образца такое же, как и при электролитическом полировании [см. раздел 2.1,4.2]. Этот процесс называют электролитическим травлением. Плотности тока при электролитическом травлении примерно в 10 раз меньше плогиостей тока, применяемых при электролитическом полировании. Во многих случаях источником тока служит 6-вольтовая батарея. В качестве катодного материала, как и при электролитическом полировании, применяют коррозионностойкие металлы (например, нержавеющую сталь). Составы некоторых из применяемых электролитов приведены в табл. 2.5.  [c.25]


Известно, что изменением состава малоуглеродистых сталей, если только не доводить их до высоколегированных сплавов, не удается повысить коррозионную стойкость этих сталей в морской или речной воде. Последнее объясняется тем, что скорость коррозии сталей в нейтральных электролитах определяется скоростью протекания катодной реакции восстановления кислорода, которая в свою очередь лимитируется доставкой кислорода к катоду (концентрационной поляризацией по кислороду). Если это так, то изменить скорость процесса можно, изменив лишь условия диффузии. В то же время известно, что при коррозии металлов с водородной деполяризацией, когда скорость процесса определяется, благодаря отсутствию концентрационной поляризации (подвижность и концентрация ионов водорода высокие), скоростью протекания самой электрохимической реакции (перенапряжением), можно изменением состава металла путем введения элементов с высоким пгренапряжением водорода резко изменить коррозионную стойкость сплава.  [c.232]

Наибольшее практическое значение в настоящее время имеет межкристаллитная коррозия металлов в электролитах, рассмотрению методов изучения которой и будет посвящена настоящая глава. Относительно низкая коррозионная стойкость металлов ло границам зерен связывается с повышенной электрохимической неоднородностью в этих районах. Обычно последнее является следствием выделения но границам зерен вторичных фаз, которые могут быть либо эффективными анодами, либо катодами по отношению к близлежащим участкам твердого раствора. Такими фазами, например, при нагреве многих хромистых и хромоникелевых сталей до температуры 450—850° С могут быть хромовожелезные карбиды Сг4(Ре)С, сигма-фаза, обедненный хромом аустенит [109], а при нагреве после закалки до 150° С многих алюминиевых сплавов — металлическое соединение СиАЬ [110]. Разрушение этих материалов имеет наибольшее практическое значение. Однако даже для них еще не разработаны методы определения склонности к межкристаллитной коррозии, полностью удовлетворяющие исследователей и практиков.  [c.96]

Измерение импеданса R и С. А. Н. Фрумкин с сотрудниками применили метод измерения емкости электрода для исследования электрохимических процессов, протекающих на металлах. Принцип этого метода заключается в том, что поверхности металла и электролиту, в который он погружен, сообщаются некоторые малые количества электричества прямого и обратного направления и измеряется изменение потенциала электрода. В дальнейшем этот метод получил развитие в работах М. А. Ворсиной и А. Н. Фрумкина, М. П. Борисовой, Б. В. Эршлера, Б. Н. Кабанова и других [41—43]. Наряду с емкостью при изучении сильноокисляющихся металлов стали измерять омическую составляющую. Г. В. Акимов, Г. Б. Кларк и Н. И. Исаев [44] применили метод совместного измерения емкости и сопротивления для изучения электрохимического поведения алюминия, покрытого защитными окисными слоями, и установили, что между характером изменения этих величин во времени и коррозионной стойкостью материала существует соответствие.  [c.158]

Ужесточение условий эксплуатации изделий из конструкционных сталей, с одной стороны, и все более детальные лабораторные исследования, с другой стороны, приводят к обнаружению все новых опасных проявлений обратимой отпускной хрупкости. Еще соегсем недавно сч№ тали, что отпускная хрупкость приводит лишь к повышению порога хладноломкости и снижению вязкости разрушения в переходном интервале температур. Затем выяснилось, что может уменьшаться и трещиностойкость (7-интеграл) в области вязкого разрушения, долговечность при ползучести, радиационная стойкость, усталостная прочность и что особую опасность представляет усиление склонности к водородному охрупчиванию и коррозионному растрескиванию в электролитах. Появились данные об усилении при развитии отпускной хрупкости восприимчивости сталей к жидкометаллической и твердо-металлической хрупкости. В связи с тем, что элементы межзеренного разрушения встречаются в самых разнообразных условиях механического нагружения, можно ожидать, что будут выявлены и новые области проявления отпускной хрупкости (например, при кавитационном разрушении, зернрграничном проскальзывании, трении и износе). Близкие по природе к явлению обратимой отпускной хрупкости процессы охрупчивания могут развиваться и в сталях аустенитного класса. Обнаружение и исследование этих новых проявлений отпускной хрупкости и близких к ней явлений также представляется важным направлением дальнейшей работы.  [c.210]

При электролитическом оловянировании из солевых расплавов рекомендуют [52] стальную полосу предварительно покрывать слоем никеля толщиной 0,01—0,04 мкм из электролита, содержащего (в г/л) №504-7Н20 (210), МСЬ-бНаО (60), Н3ВО3 (30) при рН = = 3,5—4,0 и г к до 5-102 А/м . После этого поверхность покрывают слоем олова толщиной 0,5—0,7 мкм из расплава, содержащего (в масс. %) 80 ЗпСЬ и 20 КС1 при 300 °С и 15-10 А/м в течение 0,2—0,3 с. Подслой никеля защищает сталь от растворения и перехода железа в расплавленный электролит, способствует лучшей растекаемости олова по поверхности и образованию соединений с оловом, что придает покрытию высокую коррозионную стойкость.  [c.228]

На одном английском предприятии, производящем самолеты, по данным Хюгхеза, при испытаниях яа изгиб с переменной нагрузкой образцы, оцинкованные в цианистых электролитах, показали лучшие результаты по сравнению с образцами, оцинкованными в кислых электролитах. Предел прочности на изгиб снизился на 15% у стержней с покрытием толщиной 26 мкм, оцинкованных в сульфатном электролите, у стержней, оцинкованных в цианистых электролитах, — на 9%, а при цинковании с помощью щеток — только на 5%. Коррозионная стойкость этих покрытий оказалась одинаковой. Рябченков для образцов из нормализованной стали марки 30 (0,26% С), оцинкованных на толщину 30 мкм в кислом электролите при 2 а/дм , установил повышение прочности на изгиб от переменной нагрузки с 249,9 до 259,7 Мн1м (с 25,5 до  [c.207]

За последнее время стали известны улучшенные методы непосредственного никелирования деталей нз. цинкового литья. Институт Бател Мемориал предлагает начинать обработку с предварительного никелирования, после чего нанести слой никеля в сульфатной ванне матового никелирования и закончить обычным блестящим никелированием. Однако на практике прн работе по этому методу оказалось затруднительным получить никелевые покрытия без пор. Поэтому более целесообразен такой метод, при котором вначале наносят никелевый слой в щелочном пирофосфатном электролите и только после этого наносят глянцевое покрытие. Благодаря высоким Значениям pH и лучшей рассеивающей способности щелочного электролита устраняется опасность растворения цинка, а следовательно, осаждения металла в результате ионного обмена. Такого рода покрытия, как и двойные никелевые покрытия, обнаруживают лучшую коррозионную стойкость.  [c.335]

Установлено, что рассеивающая способность хлоридфторид-ного оловоникелевого электролита несколько выше, чем электролита для блестящего никелирования. Испытания на пористость показали, что образцы, покрытые сплавом 8п—N1, толщиной 15 мк на стали с подслоем меди толщиной 20 мк практически не имеют пор. Коррозионные испытания проводились в тумане трехпроцентного раствора поваренной соли и в гидростате с переменным нагреванием и охлаждением при 100-процентной влажности. Наибольшей стойкостью против коррозии обладают образцы полированной стали, покрытые сплавом толщиной от Ъ мк и выше с подслоем меди около 30 мк. Изделия из меди и латуни можно покрывать сплавом 5п—N1 толщиной 5—15.и/с в зависимости от условий эксплуатации.  [c.41]


Нередки случаи, когда в результате неправильно выбранной технологии сварки металл шва оказывается менее коррозионностойким, чем свариваемая сталь. Так, например, сварные швы, выполненные вручную на низколегированной хромокремненикелемедис-той стали типа СХЛ (ЮХСНД) низкоуглеродистыми электродами, сильно разрушаются в морской воде под действием коррозии. Коррозия этих шво в вызвана более низким содержанием в них хрома и никеля по сравнению с основным металлом. Электрохимический потенциал нелегированного шва ниже, чем легированного основного металла, и в макропаре с основным металлом при наличии электролита (морской воды) шов оказывается анодом, что и обусловливает интенсивную его коррозию. Легирование металла шва хромом в количестве 0,7—1,0% повышает его электрохимический потенциал и коррозионную стойкость до уровня основного металла.  [c.85]

Сталь и чугун являются основными конструкционными материалами во всех отраслях машиностроения. Поэтому борьба с коррозией этих материалов имеет большое практическое значение. Стальи чугун обладают невысокой коррозионной стойкостью в агрессивных средах вследствие своей физической и химической неоднородности. В их состав входят три основные структурные составляющие—феррит, цементит и графит, обладающие весьма различными электродными потенциалами. Наиболее низкий электродный потенциал у феррита (—0,44 в), наиболее высокий у графита (+0,37 в). При соприкосновении с электролитом железоуглеродистые сплавы образуют микроэлементы, в которых цементит и графит являются катодами, а феррит— анодом. Разность потенциалов в м кроэлементах, возникающих при коррозии железоуглеродистых сплавов, достигает довольно значительных величии. Работой этих микроэлементов и объясняется сильная электрохимическая коррозия железоуглеродистых сплавов.  [c.98]

Алюминиевые покрытия чрезвычайно привлекательны тем, что обеспечивают защиту как в условиях погружения, так н в атмосферных условиях, но наиболее ценной является их стойкость в коррозионно активных электролитах, обладающих и высокой электропроводностью. Алюминиевые напыленные покрытия дают хорошие результаты в морской воде и обладают прекрасной стойкостью в сернистых атмосферах, однако в средах, содержащих серу и хлор, растворимость продуктов коррозии алюминия, по-видимому, повышается, и поэтому для защиты от коррозии в таких комбинированных средах предпочтение отдают цинковому покрытию. Если свеженапыленное на сталь алюминиевое покрытие экспонируется в течение нескольких часов в чистой воде, то оно иногда покрывается бурыми пятнами, что обусловлено катодным действием алюминия на сталь в эти первые несколько часов. По-видимому, такое действие связано с наличием в покрытии окисных слоев. Очень небольшое количество железа корродирует (растворяется) в течение начального периода выдержки, но затем алюминий начинает действовать как обычно, т. е. как анод. Образующиеся нерастворимые окислы  [c.382]

Коррозионная стойкость в водных средах. Растворы, в которых олово является катодом по отношению к стали, способствуют развитию коррозии в порах, а также возникновению крупных питтингов в электролитах с высокой электропроводностью. Покрытия, в которых имеются поры, удовлетворительно служат в коррозионных средах, когда на поверхности покрытия может образовываться осадок (иапример, в жесткой воде) или когда покрытие используется с перерывами (например, кухонное оборудование), однако в этом случае обычно используются другие покрытия, электроосажденные или напыленные, достаточной толщины и не имеющие пор.  [c.423]

Эти испытания были разработаны Баско и др. [118, 119] для оценки стойкости декоративных покрытий Си (необязательный слой)-1-М1-1-Сг. После очистки поверхности жидким составом MgO образцы погружают в раствор для испытаний А или В. Испытания проводят путем наложения потенциала -1-0,ЗВ (по отношению к насыщенному каломельному электроду) по циклу 1 мин анодной поляризации, 2 мин в отсутствие поляризации. Величину питтингов определяют с помощью микроскопа или подходящего индикатора. В случае стали к электролиту добавляется гидрохлорид 1,10-фенант-ролина (раствор (В) для того, чтобы обнаружить присутствие в растворе ионов Fe +. Образцы могут быть удалены из растворов, где проходят коррозионные испытания, и помещены в индикаторный раствор, т. е. в раствор С для литья на цинковой основе и в раствор D для сталей. Ннже приведены составы растворов для испытаний Л и В и индикаторных растворов С и D [118, 119]  [c.562]

Сочетание высокой ирочностп, малой плотности (в 1,6 раза легче стали) с высокой коррозионной стойкостью обусловило широкое применение титана для изготовления оборудования и деталей, работающих в условиях агрессивного воздействия. Высокая стоимость металла вполне компенсируется продолжительностью службы оборудования. Для изготовления оборудования обогатительных фабрик титан мало применим вследствие малой абразивной стойкости. Для заводов цветной металлургии нз сплавов ВТ1-1, ВТ 1-2, 0Т4-1 изготовляют насосы химические, свечевые фильтры, подогреватели электролита, матрицы, баки, решетки мокрых электро( )ильтров, детали автоклавной установки и др.  [c.81]

Для деталей, работающих на трение, широкое применение находит твердое хромирование. Твердое xpoMOiBoe покрытие отличается пористостью. Было показано [155], что пористость такого покрытия, полученного из стандартного электролита при 50°С и плотности тока 5500 А/м2, с увеличением толщины сначала возрастает, а затем уменьшается (рис. 76). Поэтому для стальных деталей, к которым предъявляются одновременно требювания по износостойкости и коррозионной стойкости, толщина хромового покрытия должна быть более 50 мкм. В то же время по износостойкости очень часто достаточно покрытие толщиной 9—15 мкм, одиако такое покрытие имеет низкие защитные свойства. Вместе с тем понижение толщины с 50 до 10 мкм позволяет снизить вредное влияние хромового покрытия на статическую выносливость хро-мироБанной высокопрочной стали.  [c.235]

В сварных соединениях сталей средних толщин увеличение размеров катода более чем на 120 мм (когда шов анод) и размеров анода более чем на 80 мм (когда шов — катод) не оказывают существенного влияния Fia коррозионный ток в условиях неподвижного электролита. Для оценки стойкости сварных соединений против сплот-ной коррозии (гравиметрическими, профилографиче-скими методами) рекомендуется параллельно испытывать образцы (рис. 17.3) а — из основного металла б — сварной, содержащий шов и зону термического влияния (зтв) в — сварной G зоной термического влияния и основным металлом. Размер образца следует выбирать из условия  [c.508]

Детали, эксплуатирующиеся в сыпучей среде, следует изготовлять из материалов, удовлетворяющих следующим требованиям высокая стойкость к воздействию коррозионного электролита, к неравномерной и межкристал-литной коррозии и коррозионно-механическому разрушению (коррозионному растрескиванию, коррозионной усталости, коррозионно-абразивному изнашиванию и др.), отсутствие склонности к образованию элементов дифференциальной аэрации (в первую очередь — для корро-зионно-стойких сталей).  [c.563]

Коррозионные испытания, проводившиеся весовым методом, а также фотоколориметрически,показали,что сталь Х18Н9Т в растворах соляной кислоты не отличается высокой стойкостью и она уменьшается с повышением температуры электролита.  [c.92]

Коррозионные испытания в течение 30 суток при относительной влажности 96 2 %, температуре 40 2 °С, а также в камере солевого тумана в течение 7 суток выявили существенное различие в поведении образцов. Наиболее хорошими антикоррозионными свойствами — защитной способностью по отношению к стали и стойкостью против коррозии цинка — характеризовались покрытия, полученные в электролите с добавкой Лимеда НБЦ, несколько ниже — с добавкой ПВП. Наиболее низкими антикоррозионными свойствами отличаются покрытия из цианидного и аммиакат-ного электролитов без добавок органических соединений. Эти результаты хорошо коррелируют с изменением физико-химических свойств поверхности образцов (табл. 5.1).  [c.123]


Смотреть страницы где упоминается термин Коррозионная стойкость стали в электролитах : [c.91]    [c.120]    [c.2]    [c.160]    [c.84]    [c.87]    [c.32]    [c.319]    [c.20]    [c.40]    [c.141]    [c.320]    [c.1229]    [c.13]    [c.577]   
Смотреть главы в:

Справочник по машиностроительным материалам Том 1  -> Коррозионная стойкость стали в электролитах



ПОИСК



Стали коррозионная стойкость

Стойкость коррозионная

Электролит



© 2025 Mash-xxl.info Реклама на сайте