Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометрия при температурах высоких

Необходимый тепловой контакт между термометром и телом, температуру которого желательно измерить, не обязательно должен быть механическим контактом. Уже отмечалось, что передача излучения от одного тела к другому позволяет осуществить идеально адекватные способы теплового контакта. Кроме того, хороший физический контакт не обязательно подразумевает хороший тепловой контакт. При очень низких температурах возможно существование магнитных спиновых систем, которые составляют единое целое с кристаллической решеткой, но имеют с ней очень плохой тепловой контакт. На этом факте основаны способы достижения предельно низких температур. С другой стороны, при очень высоких температурах (в плазме) распределение энергии между электронами может существенно отличаться от распределения энергии между ионами. Поэтому можно говорить, что электронная температура отличается от ионной температуры .  [c.23]


Для газовой термометрии при высоких температурах поправка на гидростатическое давление, возникающая из-за разности плотностей газа на различных участках трубки, составляет незначительную часть от суммарной поправки. Для низкотемпературной газовой термометрии наблюдается обратная картина, поскольку отношение плотностей газа при комнатной температуре и при температуре ниже 10 К становится очень большим. Гидростатическая поправка самым тесным образом связана с поправкой  [c.94]

При достаточно высоких частотах акустическая длина волны становится настолько малой, что начинает приближаться к длине свободного пробега молекул газа. В этом случае основное уравнение для с (3.36) и уравнения для ак-г и ао перестают выполняться, так как все они получены в предположении, что газ представляет собой непрерывную среду. Согласно кинетической теории, тепловая скорость молекул в газе имеет тот же порядок, что и скорость звука. Таким образом, если длина звуковой волны по порядку величины приближается к средней длине свободного пробега, то звуковая частота должна приближаться к частоте соударений между молекулами. Это очень высокая частота порядка 10 Гц, так как средняя длина свободного пробега при комнатной температуре составляет величину порядка 100 нм. В акустической термометрии столь высокие частоты никогда не применяются, самая высокая частота, на  [c.105]

Платиновый термометр сопротивления является прибором, которому отдают предпочтение для наиболее точного измерения температуры в диапазоне от тройной точки водорода (13,81 К) до точки плавления сурьмы (903,89 К). К достоинствам платины как материала для термометров можно отнести ее химическую инертность вплоть до высоких температур, высокую температуру плавления, высокое удельное сопротивление ( 10 мкОм-см при комнатной температуре), а также легкость изготовления из платины высокочистой тонкой проволоки. Од-  [c.200]

Градуировку и поверку термопар производят, пользуясь образцовой термопарой или образцовым термометром. Поверяемые термопару и термометр помещают в ванну с жидкостью, температуру которой медленно повышают. При температуре до 200 °С ис-пользуют минеральное масло, а при 200—600 °С — расплавленные соли при более высоких температурах градуировку выполняют в лабораторной печи.  [c.135]


Реальное использование газового термометра в области высоких и низких температур для установления универсальной идеально-газовой шкалы невозможно при высоких температурах происходит диссоциация молекул, а затем — ионизация атомов, уравнение Клапейрона становится несправедливым при низких температурах происходит конденсация.  [c.38]

Нагрев термостата осуществлялся с помощью основного и двух концевых нагревателей. Применение медного термостата обеспечивало поддержание постоянной температуры по длине с погрешностью в 1 °С при высоких температурах и около 0,5 °С при температурах ниже 200 °С. Измерения начинались не раньше, чем через час после установления заданного режима. Во время измерений записывались показания термопар и термометра сопротивления.  [c.173]

Очень удобно присоединить эту линию к имеющимся дренажным трубопроводам со стороны входа воды. При возрастании давления в водяном пространстве до определенной величины мембраны разрываются и давление в ПВД быстро снижается. Первая по ходу среды мембрана подвергается воздействию высокой температуры и давления. При этом ее механические свойства ухудшаются и она может разорваться при более низком давлении, поэтому необходимо периодически, примерно один раз в год, делать ее профилактическую замену. Во время эксплуатации целостность первой по ходу среды мембраны контролируется по манометру, второй — по нагреву сбросной линии (термометром или на ощупь). На время гидравлических испытаний ПВД в узел крепления мембраны устанавливается заглушка либо мембрана, рассчитанная на разрыв при более высоком давлении, чем давление гидравлического испытания.  [c.71]

Ртутные термометры изготовляются для измерения температур в пределах от —30 до +550° С. Однако для высоких температур в настоящее время чаще используют термопары при температурах выше 150—200° С ртутные термометры применяют редко.  [c.89]

Поправку к показаниям лабораторных термометров на температуру выступающего столбика следует вводить только при измерении высоких температур. При проведении измерений с повышенной точностью рекомендуется выбрать такой термометр, для которого величина поправки будет минимальной.  [c.72]

Основными достоинствами термометра сопротивления является высокая степень точности измерения температуры и возможность автоматической записи измеряемой температуры при достаточно большом удалении регистратора от места измерения.  [c.83]

В действительности, однако, при понижении температуры влажной ткани вследствие появляющейся при этом разности температуры воды в ткани и температуры окружающего воздуха происходит приток тепла к влажной ткани из близлежащих слоев воздуха. Благодаря этому равновесие (неизменность температуры влажной ткани) устанавливается не при температуре точки росы, а при несколько более высокой температуре. Эта температура носит название температуры мокрого термометра.  [c.467]

В СССР во ВНИИФТРИ изготовляются образцовые платиновые термометры (рис. 13), конструкция которых разработана проф. П. Г. Стрелковым [37]. В этих термометрах тонкая платиновая спираль помещается на кварцевом геликоидальном (скрученном в виде двухходового винта) каркасе. Применение кварца, являющегося прекрасным изолятором, позволяет использовать термометр при более высоких температурах, чем это возможно для термометров со слюдяным каркасом. Термометры конструкции Стрелкова могут быть двух типов 1) термометры, предназначенные для работы при высоких температурах, изготовленные из платино-  [c.90]

Угольные сопротивления. Угольные сопротивления применяются для целей термометрии при температурах ниже 80° К. Джиок с сотр. [41] еще в 1936 г. описали изготовление и использование графитовых стержней, в частности стержней из коллоидального углерода, в качестве комбинированного термометра-нагревателя при температурах жидкого гелия и ниже 1° К. Наиболее удачные термометры, многие из которых были впоследствии использованы для измерения теплоемкостей, были изготовлены из угольной сажи, нанесенной на бумагу, которая прикреплялась непосредственно к держателю образца. Слой сажи защищался еще одним слоем бумаги и коллодия. В качестве электрических вводов с плохой теплопроводностью использовались тонкие пленки платины, нанесенные на стекло, которые работали удовлетворительно, несмотря на их высокое сопротивление. Такие термометры оказались очень чувствительными, имели малую теплоемкость и тепловую инерцию и могли быть приведены в хороший тепловой контакт с исследуемым веществом даже при температурах ниже 1° К. Эти термометры наиболее пригодны для измерения температур ниже 4° К они могут применяться и для точных измерений до температур жидкого водорода и для грубых измерений вплоть до температур жидкого воздуха. Ван-Дейк, Кеезом и Стеллер [42] изготовили сопротивления с подобными характеристиками из взвесей углерода в виде китайской туши и туши для писания по стеклу.  [c.173]


В работе Фурукавы, Дугласа, Коскея и Гиннингса, выполненной в 1956 г. в НБС [103], была использована в основном та же аппаратура, что и в работе [109]. С целью большей равномерности температурного поля внутрь алундовой трубы были помещены три серебряных цилиндрических блока. Для сокращения времени, необходимого для установления теплового равновесия образца и среды, установку наполняли гелием. В центральный серебряный блок помещали платиновый термометр сопротивления и платинородий-платиновую термопару. До температур 900 К применяли термометр, при более высоких— термопару. Печь была использована для измерений при температурах 300—1200 К. Ледяной калориметр имел такую же конструкцию, как и в работе [109]. Общая погрешность измерений составляла примерно 0,2%.  [c.182]

В соответствии с СНиП 3.04.03—85 расстояние от точки плавления проволоки до защищаемой поверхности должно быть в пределах 80—150 мм при оптимальном угле наклона металловоздушной струи к обрабатываемой поверхности 65—80° оптимальная толщина одного слоя 50—60 мкм температура защищаемой поверхности при напылении — не выше 150° С (что контролируется с помощью контактного термометра). При более высоких температурах в покрытии развиваются большие усадочные напряжения, ослабляющие его связь с подложкой.  [c.227]

Теперь, завершив изложение основных принципов газовой термометрии, обратимся к факторам, которые приводят к погрешностям. До сих пор достаточно было знать вириальные коэффициенты либо при температурах Го или Тг для термометрии по абсолютным изотермам, либо при температуре Г для газового термометра постоянного объема (ГТПО). Как видно из п. 3.2.1, вириальные коэффициенты достаточно хорошо известны и обычно не являются предметом исследования в термометрии. Погрешность при измерении температуры Т, возникающая из-за неточности в В(Т) и С(Т), относится к числу малых, но систематических погрешностей эксперимента. Одним из самых важных источников погрешностей в газовой термометрии, особенно при высоких температурах, является сорбция термометрического и других газов на стенках колбы газового термометра. Ранее при рассмотрении газтермометрических уравнений пред-  [c.88]

При измерении величин Р и К принципиально необходимо вводить поправку на вредный объем, гидростатическую поправку, возникающую из-за переменной плотности газа по длине трубки для измерения давления и на термомолекулярное давление. Последняя из этих поправок обусловлена потоком частиц газа вдоль трубки, передающей давление, и является функцией давления, разности температур между концами трубки и состояния ее внутренней поверхности. На рис. 3.8 приведены величины всех трех поправок для низкотемпературного газового термометра Берри. Для газового термометра на интервал высоких температур одной из самых существенных является поправка на вредный объем. Это обусловлено тем, что в формулу (3.24) для вычисления поправки на вредный объем входят элементарные объемы участков трубки, которые содержат газ с высокой плотностью. В случае газовой термометрии при высоких температурах это те части трубки, передающей давление, которые находятся при комнатной температуре. Во время эксперимента необходимо самым тщательным образом следить за тем, чтобы температура участков соединительной трубки,которые находятся при комнатной температуре, оставалась постоянной. Кроме того, необходимо контролировать изменения объема при открывании и закрывании вентилей. Измерение температуры и объема соединительной трубки и вентилей с необходимой точностью требует применения довольно сложных экспериментальных методов и является одним из основных источников погрещности газовой термометрии в области высоких температур. В низкотемпературной газовой термометрии газ, имею-  [c.93]

Мп(ЫН4)2(В04)2бН20, могут примсняться при более высоких температурах, чем ЦМН, поскольку первое возбужденное состояние для них соответствует очень высоким температурам. Ниже температуры перехода 164 К кубическая решетка ХМК перестраивается в орторомбическую. Магнитные свойства ХМК достаточно хорошо известны [34] в связи с простотой основного состояния, а ионы в узлах решетки расположены на относительно больших расстояниях, так что диполь-дипольное взаимодействие становится незначительным. Дюрье [23] для ХМК нашел значения 6 = 0,00279 К , 0=12 мК и показал, что при температурах выше 1 К членами вида 1/Р и более высоких порядков можно пренебречь. Таким образом, соль ХМК с успехом может применяться в магнитной термометрии для области температур выше 0,3 К. Теория магнитного состояния для МАС изучена значительно хуже ввиду гораздо более трудного для описания основного состояния, чем у ХМК. Пока не получено достаточно точных численных значении для 0 и б, каждое из которых определяется экспериментально для конкретного образца. Тем не менее поведение индивидуальных образцов МАС довольно точно описывается уравнением (3.88)  [c.126]

Обеспечить погружение термометра на глубину 15 см в ампулу тройной точки воды, как это необходимо при измерениях высшей точности, разумеется, несложно. Однако при более высоких температурах трудно обеспечить однородность температуры на достаточной длине. Глубина погружения, обеспечиваюшая заданную точность измерения, мало зависит от температуры, поскольку зависимость носит логарифмический характер. Как видно, например, из рис. 5.15, разность между истинной температурой и показаниями термометра уменьшается в 10 раз при увеличении глубины погружения всего на 3 см. Таким образом, если окружаюшая температура отличается от температуры в кювете не на 25, а на 250 °С, то для сохранения прежней точности измерений необходимо увеличить глубину погружения всего на 3 см. Наоборот, если разность температур составляет не 25, а 2,5 °С, глубину погружения нужно уменьшить  [c.212]


При измерении высоких температур термометрами сопротивления существенными становятся также радиационные тепловые потери вдоль термометра. Для термометров, имеющих кварцевый кожух, световодный эффект (многократное отражение внутри стенок кожуха) приводит к погрешности до 80 мК при 600 °С [22]. К счастью, тепловые потери за счет внутренних отражений легко ослабить, обработав пескоструйным аппаратом внешнюю поверхность кожуха или зачернив ее, например, аквадагом на длину в несколько сантиметров сразу за чувствительным элементом (см. рис. 5.13). Этот прием теперь используется при изготовлении всех стержневых термометров, включая и термометры в стеклянном кожухе, предназначенные для использования выше точки плавления олова (-230 С).  [c.213]

Точный платиновый термометр сопротивления, который обсуждался в предшествующих разделах, является тонким и хрупким прибором. Механические сотрясения, даже не столь сильные, чтобы повредить кожух, вызывают напряжения в чувствительном элементе и увеличивают его сопротивление. В некоторых конструкциях термометров повторные сотрясения в осевом направлении могут привести к сжатию витков проволоки и в конечном счете к замыканию между витками. Помимо этих деликатных приборов, существуют также технические платиновые термометры сопротивления, конструкция которых выдерживает использование в нормальных производственных условиях. Выпускается множество самых различных типов технических термометров. Общим для всех них является то, что чувствительный элемент прочно закреплен, а часто просто заделан в стекло или керамику. Это Делает термометр исключительно прочным, но в то же время пбнижaJeт стабильность его сопротивления. Причин относительной нестабильности сопротивления по сравнению с точным лабораторным термометром две. Во-первых, чередование нагрева и охлаждения приводит к тому, что вследствие различия в коэффициенте теплового расщирения у платины и материала, охватывающего проволоку, чувствительный элемент испытывает напряжения, приводящие к изменению его сопротивления, и возникают остаточные деформации, которые также сказываются на величине сопротивления. Влияние механических напряжений можно снять отжигом при достаточно высокой температуре, однако остаточные деформации устранить, разумеется, невозможно. Во-вторых, при высоких температурах происходит изменение сопротивления вследствие диффузионного загрязнения платины окружающим материалом. Хотя воспроизводимость результатов, получаемых с помощью технических платиновых термометров сопротивления, уступает воспроизводимости прецизионных платиновых термометров сопротивления, она существенно лучще, чем у термопар, работающих в условиях технологического процесса. По этой причине многие миллионы платиновых термометров сопротивления используются в технике, промыщленности, авиации и т. д.  [c.221]

Подобрать термометр, стабильность которого существенно выше 1 мК при 20 К, оказывается довольно сложным делом. Только 18 из 60 исследованных термометров показали среднеквадратичное отклонение менее 0,25 мК. Однако в процессе испытаний очень немногие термометры изменяли свои характеристики. Если не считать первых десяти температурных циклов, те термометры, которые показали высокую стабильность, неизменно оказывались стабильными те же, у которых наблюдался дрейф или иные типы нестабильностей, продолжали вести себя аналогичным образом. Было обнаружено, однако, что время от времени градуировка термометра, который на протяжении ряда температурных циклов вел себя стабильно, скачкообразно менялась (рис. 5.37). Скачок сильнее сказывается при более высоких температурах, когда сопротивление термометра меньше. Именно этот эффект, отсутствующий у железородиевых термометров, затрудняет использование германиевого термометра для воспроизведения температурной шкалы в области низких температур.  [c.240]

Хотя полость черного тела является идеальным тепловым излучателем, для воспроизведения и передачи МПТШ-68 она не всегда удобна. Для части МПТШ-68, определяемой реперными точками и термометром сопротивления, именно он служит для поддержания и передачи шкалы, а не печь, масляная ванна или криостат. Различие между двумя частями шкалы принципиально. В нижней части МПТШ-68 величина Тее определяется через характеристики термометра, т. е. через W(Tei) и Е Тв8)-При более высоких температурах Т а определяется свойствами излучателя в виде черного тела, а не прибором, применяемым в качестве термометра. Согласование с определением шкалы значительно лучше, если она поддерживается воспроизводимым излучателем, а не прибором, который измеряет излучение. Действительно, воспроизведение и передача шкалы с помощью при-  [c.349]

Термометры, предназначенные для работы выще 100 °С, обычно заполнены газом для подавления перегонки ртути в расщирительную камеру, которая в противном случае имеет место при высоких температурах у термометров частичного и полного погружения. Если термометр предназначен для использования при температурах до 500 С, газовое давление в нем довольно высоко — порядка 2 МПа. Отсчеты газонаполненного термометра, использующегося при погружении целиком, будут ниже, чем у того же термометра при частичном или полном погружении, из-за влияния температуры на внутреннее давление газа.  [c.403]

Термометр пипеточного типа точно устанавливается при нужной температуре еше проше, чем термометр Бекмана. Вершина капилляра заканчивается грушевидной камерой, а значения шкалы на верхнем конце капилляра маркируются на корпусе. Для понижения нуля к определенному значению термометр помешается в ванну, имеюшую температуру, равную требуемой плюс значение по шкале на вершине капилляра. Избыток ртути выталкивается из вершины капилляра и стряхивается в резервуар легким, но резким ударом. Для установления нуля при более высокой температуре избыток ртути, во-первых, втягивается в основной резервуар переворотом термометра, как и в случае термометра Бекмана, а затем проводится поцедура понижения нуля к выбранному значению. Длина  [c.409]

В технике для измерения температур используют различные свойства тел расширение тел от нагревания в жидкостных термометрах изменение объема при постоянном давлении или изменение давления при постоянном объеме в газовых термометрах изменение электрического сопротивления проводника при нагревании в термометрах сопротивления изменение электродвижущей силы в цени термопары при нагревании или охлаждении ее спая. При измерении высоких температур оптическими пирометрами используются законы излучения твердых тел и методы сравнения раскаленной гшти с исследуемым материалом.  [c.15]

Для исследований открылась совершенно новая область температур, и, поскольку методика работы в области температур, получаемых адиабатическим размагничиванием, сильно отличается от методики работы при более высоких температурах, встретились новые экспериментальные трудности. Криостат, заполненный ожиженным газом, обладает многими достоинства-Аш, Между жидкостью и погруженным в нее объектом исследования имеется хороший тепловой контакт распределение температуры достаточно однородно, причем степень однородности можно улучшить путем перемешивания температура может поддерживаться постоянной при желаемом значении путем ре] улировапия давления, при котором кипит жидкость. Паразитный приток тепла вызывает лишь испарение жидкости при постоянной температуре и, паконец, упругость пара жидкости представляет собой удобный вторичный термометр, который может быть прокалиброван сравнением с газовым термометром. Все эти преимущества при использовании парамагнитной соли в качестве охлаждающего вещества теряются. В последнем случае приток тепла приводит к повышению температуры, и, поскольку парамагнитная соль при более низких температурах обладает очень незначительной i еплопроводностью (см. п. 19), этотприток тепла может заметно нарушить однородность распределения температуры. По той же причине качество теплового контакта между солью и объектом исследования при более низких температурах вызывает сомнение. В области температур, достигаемых размагничиванием, определение термодинамической температуры само по себе становится серьезной задачей.  [c.424]


Общпе сведения о термометрии. Фундаментальное определение температуры предложено Кельвином уже больше ста лет тому назад [37, 38]. В его основу может быть положен обратимый цикл Карно. Предполоя 1м, что количество тепла, изотермически пoглoи aeмoгo при более высокой температуре (7 ), равно а количество тепла, изотер-  [c.438]

Доетоинствами металлических термометров сопротивления являются высокая степень точности измерения температуры, возможность применения стандартной градуировочной шкалы во всем диапазоне измерения (основана на стабильности и воспроизводимости термометрических свойств) и другие преимущества, которые проявляются при электрической форме выходного сигнала.  [c.176]

Прежде всего здесь следует обратиться к таким свойствам окружающих нас тел, которые, по нашим наблюдениям, изменяются с изменением температуры. Естественно при этом использовать расширение тел при нагре-вашш. Так родились термометры, измеряющие температуру по изменению объема жидкости. При более тщательном исследовании оказалось, что в этом способе скрывалась существенная неоднозначность, которую можно наглядно проиллюстрировать. Представим себе, что изготовлено несколько термометров заполненных разными жидкостями. Отметим на них одинаковые опорные точки , например температуры плавления каких-либо двух веществ. Разделим на всех термометрах шкалу между этими точками на одинаковое число равноотстоящих частей. Если теперь вес термометры поместить в среду, обладающую какой-то промежуточной температурой, то, как обнаружит опыт, показания разных термометров будут различными Особенно курьезно вел бы себя при этом термометр, который мы ренльли бы заполнить водой. При температуре несколько более высокой, чем точка плавления льда, его столбик стоял бы не выше, а ниже этой точки.  [c.182]

Пирометрические устройства [13]. Термоэлектрические пирометры (термопары с милливольтметрами) вытеснили применявшиеся ранее ртутные термометры. В механических лабораториях пользуются преимущественно термопарами из неблагородных металлов, что объясняется экономическими соображениями и отчасти большей электродвижущей силойтаких термопар. Для механических испытаний при температурах до 900° С могут быть рекомендованы никель-нихромовые и хромель-алюме-левые термопары. Для более высоких температур лучше применять илатино-платиноро-  [c.50]

Обычный термометр сопротивления, описанный в предыдущем параграфе, рекомендуется применять для измерения температуры до 6 3(f С. При нагревании термометра до более высоких температур его константы становятся 1нестабильны ми.  [c.116]

Следует обратить внимание и на точность измерения температуры, так как, например, ошибка в измерении температуры всего на 0,1° С для водяного пара при температурах 100—360° С приводит к ошибке отнесения Sp° , равной 0,4 — 0,12%. При выборе способа измерения температур и проведения измерений надо руко- водствовать ся рекомендациями гл. 3. Наиболее высокую точность измерения в широком интервале температур можно получить, применяя платиновый термометр сопротивления в (комплекте с потен-цио.метром высокого класса.  [c.145]

Если привести в контакт два тела, принадлежащих к двум изолированных группам, то следует считать, что эти две группы тел находятся на разных температурных уровнях, если в результате контакта происходят изменения в наблюдаемых характеристиках одного или обоих тел. Конечно, наиболее просто подобное исследование может быть выполнено, если включить в одну группу тел ртутный термометр и наблюдать за изменением положения ртутного мениска, когда термометр приведен в контакт со второй группой тел. При отсутствии других соображений допустимо было бы сказать относительно этих групп тел, что та из них находится при более высокой температуре, при соприкоано- вении стелами которой мениск ртути в капилляре поднимается на большую высоту. Далее можно определить шкалу температуры путем нумерации отметок, расположенных через одинаковые интервалы вдоль капиллярной трубки, причем в соответствии с нашим определением 1более удаленные от шарика отметки будут соответствовать более высоким температурам.  [c.7]

В соответствии с положением о действующей в настоящее время международной практической температурной шкале 1968 г. эта шкала реализуется с помощью платинового термометра сопротивления в несколько ином интервале температур — от —259,34° С (тройная точка водорода) до 630,74° С. При температурах от 630,74° С до 1064,43° С (точка затвердевания золота) международная температурная шкала основывается на показаниях платинородин-платиновой термопары, а при более высоких температурах экстраполируется посредством оптического пирометра. Более сложным путем реализуется температурная шкала при температурах ниже тройной точки лодорода.  [c.76]


Смотреть страницы где упоминается термин Термометрия при температурах высоких : [c.114]    [c.193]    [c.40]    [c.49]    [c.66]    [c.90]    [c.91]    [c.92]    [c.93]    [c.97]    [c.208]    [c.215]    [c.222]    [c.250]    [c.375]   
Температура (1985) -- [ c.93 ]



ПОИСК



Г азовая термометрия при высоких температурах. Г. Мозер

Низкоомный платиновый термометр сопротивления для измерения высоких температур

Температура высокая

Термометр

Термометрия



© 2025 Mash-xxl.info Реклама на сайте