Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приводы силами резания

Приводы силами резания  [c.95]

ПРИВОДЫ СИЛАМИ РЕЗАНИЯ  [c.95]

Внешние возмущения в основном являются воздействиями системы СПИД на исполнительный привод (сила резания, сила сухого трения в направляющих, масса движущихся частей и т. д.).  [c.137]

Из машины полоса поступает в стационарные ножницы 3 кривошипного типа с нижним резом и электромеханическим приводом. Сила резания ножниц 600 кН. Мощность электродвигателя 38 кВт. Отрезанные концы полос по склизу падают в короб на самоходной тележке с электромеханическим приводом.  [c.718]


Большая жесткость системы является одним из основных условий достижения точности при обработке. При отсутствии достаточной жесткости под действием сил резания и других сил система деформируется, что приводит к искажению формы детали и получению неправильных ее размеров.  [c.56]

Форма волны зависит от причин, которые вызывают волнистость поверхности. Чаще волнистость имеет синусоидальный характер, что является следствием колебаний в системе станок — приспособление—инструмент—деталь, возникающих из-за неравномерности сил резания, наличия неуравновешенных масс, погрепшостей привода и т. п.  [c.193]

Одним из таких факторов является так называемая технологическая наследственность, под которой в обш,ем случае понимается изменение эксплуатационных свойств деталей под влиянием технологии их изготовления. Технологическое наследование свойств, в том числе геометрических погрешностей, начинается с заготовки и проходит через весь процесс изготовления детали. Неточность заготовок и Обусловленное этим колебание припусков на обработку и сил резания непосредственно сказывается на точности ряда последующих операций обработки на металлорежущих станках, ведет к наклепу поверхностей, внутренним напряжениям, которые могут самым неожиданным образом проявить себя в уже готовой машине. Так, например, при высокой температуре, характерной для работы турбин, перераспределение внутренних напряжений приводит к короблению их лопаток.  [c.5]

При этом имеется в виду, что само зависит от ряда причин, например, от ширины и глубины обработки, как это имеет место при фрезеровании, от твердости и т. п. Наиболее быстро на изменение силы резания реагируют системы, в которых применяются динамометрические инструментальные державки. Запаздывание с изменением подачи в этом случае значительно меньше, чем когда датчик регистрирует изменение мош,ности или давления жидкости в цилиндре привода подачи. Системы адаптивного управления могут реагировать и на изменение температуры в зоне резания, уменьшая при ее возрастании не подачу, а частота вращения шпинделя. Поддержание температуры резания на нужном уровне позволяет повысить размерную стойкость инструмента до 50%.  [c.212]

Системы управления подразделяются на системы предельного и системы оптимального регулирования. Принцип действия системы предельного управления иллюстрируется рис. 5.25. Каждому определенному случаю токарной (или фрезерной) обработки соответствует определенное положение границы поля скорость резания — подача. Этими границами (пределами) являются максимальная мощность главного привода, максимальный крутящий момент, максимальная и минимальная частоты вращения шпинделя (скорость резания), максимальная и минимальная подачи, максимальная сила резания и т. д. Характерным для системы  [c.131]


Исходные данные для выбора габарита, класса точности и исполнения бабки, а также типа привода а) диаметр растачиваемого отверстия б) осевая сила резания в) потребляемая  [c.69]

С ростом износа увеличиваются составляющие сил резания [6], т. е. возрастают силы нормального давления на поверхностях контакта. Это приводит к сближению контактирующих поверхностей, которое определяет изменение расстояния между математическими ожиданиями распределений шероховатостей контактных поверхностей инструмента и детали. Таким образом, в выражении (2) повысится величина g , период Т уменьшится, а число импульсов п, которые определяются величиной взаимного проникновения микронеровностей, т. е. толщиной контактного сдоя, увеличится. Это означает, что с ростом износа возрастает интенсивность колебаний, генерируемых взаимодействием микронеровностей на единице площади во всех частотных диапазонах спектра 5(ш).  [c.52]

Отклонение от правильной геометрической формы рабочей поверхности центровых отверстий детали приводит к тому, что под воздействием сил резания происходит смещение обрабатываемой заготовки относительно оси центров станка.  [c.10]

В период между правками, в процессе шлифования, происходит постепенное уменьшение размера шлифовального круга, а также изменение режущей способности круга. На погрешность обработки при использовании приборов активного контроля во многих случаях размерный износ круга не влияет. Однако изменение режущей способности круга за период его стойкости приводит к изменению сил резания, а следовательно, к появлению различных по величине силовых и тепловых деформаций системы. С уменьшением режущей способности круга ухудшаются чистота обрабатываемой поверхно и и геометрическая форма детали.  [c.17]

В настоящее время общеизвестна зависимость угла трения от скорости. Эта зависимость приводит в процессе резания к нелинейной с падающими участками характеристике силы резания. Возбуждение автоколебаний на основе такой характеристики не вызывает сомнений.  [c.92]

Вместе с тем физическая природа зависимости силы резания и трения от скорости, по-видимому, одинакова и приводит к изменению положения главных осей напряженно-деформированного состояния при изменении скорости движения.  [c.99]

В качестве примера укажем, что изменение положения главных осей приводит в процессе резания к нелинейной с падающими участками характеристике силы резания.  [c.102]

При испытании станков обрабатывают образцы при загрузке привода до номинальной мощности и кратковременных перегрузках на 25% номинальной мощности. Проверяют также наибольшую силу резания и максимальный крутящий момент. Испытание под нагрузкой производят путем обработки образцов металла резанием. На это затрачивается ежегодно значительное количество высококачественной стали. Однако этот расход металла может быть резко сокращен, если испытание станков под нагрузкой вести не резанием, а посредством приборов. В этом случае при испытании, например, токарного станка в центрах его устанавливают вместо металлической болванки зубчатое колесо с косым зубом, сцепляющееся с укрепленным на суппорте специальным прибором, имеющим зубчатый редуктор, генератор постоянного тока и тормозное устройство. Соответствующие приборы применяют также при испытании фрезерных и сверлильных станков. Испытание прессов следует проводить с имитацией усилий вырубки, ковки, протяжки.  [c.609]

Колебания несущей системы (виброперемещение, виброскорость, виброускорение) Крутильные колебания элементов кинематической цепи Колебания инструмента относительно заготовки Излучаемый шум (акустический сигнал) Колебания силы резания Колебания мощности приводов  [c.40]

Сила резания R, приходящаяся на один ковш, составляет часть полной силы резания Р, развиваемой приводом.  [c.1200]


В неблагоприятных условиях работают и прямоугольные резцы. В момент врезания они всегда встречаются с острой вершиной гребешков одним и тем же местом режущей кромки, что приводит к преждевременному ее выкрашиванию. При всех своих недостатках рассматриваемая схема резания позволила исследовать условия попутного резания при большой толщине снимаемого припуска до 2—3 мм. Установлено, что силы резания плавно нарастают от нуля до максимального значения в момент врезания резцов (треугольных и прямых) большая радиальная подача, но малая ширина срезаемого слоя. При выходе инструмента — наоборот малая подача, но большая ширина срезаемого слоя.  [c.191]

За расчетное число оборотов шпинделя принимают такое число оборотов, при котором нагрузка на элементы привода максимальная. Расчетное число оборотов можно определять, исходя из режимов резания, по заданной величине наибольшего крутящего момента или силы резания, на основе анализа условий эксплуатации станков. В коробках скоростей универсальных, в частности, токарных, револьверных и консольно-фрезерных станков за расчетное число оборотов обычно принимают минимальное число оборотов, начиная с которого работа идет с использованием полной мощности (нижнюю часть диапазона чисел оборотов в основном используют для операций, не требующих большой мощности — развертывания, зачистки резьбы и т. п.). Для универсальных станков (револьверных, карусельных, консольно-фрезерных, расточных и токарных, за исключением широкоуниверсальных токарных станков среднего размера) в качестве расчетного числа оборотов шпинделя можно принять число оборотов, соответствующее верхней ступени нижней трети диапазона для широкоуниверсальных токарных станков средних размеров — число оборотов, соответствующее нижней ступени второй трети диапазона для универсальных сверлильных станков средних размеров — число оборотов, соответствующее верхней ступени нижней четверти диапазона [5].  [c.563]

Сочетание распределения линейной функции а t) и распределения переменной во времени функции Ь (t), также являющейся линейной, приводит к несимметричному суммарному распределению, которое получается, когда наряду с мгновенным распределением случайных величин ф (у) по закону Гаусса имеет место распределение ф (Ь), характеризующее непостоянство во времени мгновенного распределения, и распределение ф (а), выражающее систематическое изменение размеров. Такой пример встречается в общем случае обработки деталей на автоматах, когда размерный износ резца приводит к смещению центров группирования размеров, а затупление (результат изменения силы резания при износе резца) — к дополнительному смещению центров группирования и изменению мгновенного распределения случайных величин по ходу технологического процесса.  [c.458]

Кроме того, размерный износ сопровождается изменением силы резания и приводит к дополнительным погрешностям размеров и формы деталей.  [c.473]

В результате сопротивления металла деформированию возникают реактнвные силы, действующие на режущий инструмент. Это силы упругого (Р 1 и Ру ) и пластического Р,,, и Рг. ) деформирования, векторы которых направлены перпендикулярно к передней и главной задней поверхностям резца (рис. 6.9, д). Наличие нормальных сил обусловливает возникновение сил трения (Т, и Т. ), направленных по передней и главной задней поверхностям инструмента. Указанную систему сил приводят к равнодействующей силе резания  [c.263]

Положительное влияние нароста заключается в том, что при наличии его меняется форма передней иоверхности инструыенга, что приводит к увеличению переднего угла, следовательно, к уменьшению силы резания. Вследствие высокой твердости нарост способен резать металл Нарост удаляет центр давления стружки от режуигеп кромки, в результате чего уменьшается износ режущего инструмента по передней иоверхпости. Нарост улучшает теплоотвод от режущею инструмента  [c.266]

Износ инструмента приводит не только к снижению точности размеров и геометрической формы обработанных поверхностен. Работа затупившимся инструментом вызывает рост силы резания. Соответственно увеличиваются составляющие силы резания, что вызывает повышенную деформацию заготовки и инструмента и еще более снижает точность и изменяет форму обработанных пог.ерх-ностей заготовок. Увеличиваюгся глубина наклепанного поверхностного слоя материала заготовки и силы трения между заготовкой и инструментом, что, в свою очередь, увеличивает теплообразование в процессе резания.  [c.273]

Приведенные на рис. 7.19 результаты исследований подтверждают эффективность комбинированной модификации, и, как следует из представленных зависимостей, наиболыиий эффект повьппения стойкости твердосплавного инструмента достигается в области высоких скоростей резания, т.е. в условиях активизации адгезионных и диффузионных процессов при изнашивании инструментального сплава. Комбинированная модификация твердосплавного инструментального материала, как показали исследования процесса резания, приводит к уменьшению зоны вторичных деформаций, что является следствием снижения степени адгезионного взаимодействия с обрабатываемым материалом. В результате этого снижается уровень значений составляющей силы резания отражающей характер трения в процессе трибомеханического взаимодействия. Изнашивание модифицированного инструментального материала характеризуется повышенной сопротивляе-  [c.227]

Влияние на траекторию звена износа жестко связанных направляющих. Выше была рассмотрена плоская задача, когда искажение траектории движения звена зависит от износа одной пары направляющих. В конструкциях различных механизмов машин движение ползунов, столов, суппортов и других звеньев осуществляется по нескольким направляющим, каждая из которых имеет свои условия работы и неодинаковую форму изношенной поверхности. Вместе с тем они являются, как правило, жестко связанными сопряжениями (см. гл. 7, п. 1) с взаимным влиянием на износ каждой пары. Рассмотрим влияние износа нескольких направляющих на точность перемещения ведомого звена на при-iwepe токарного станка (рис. 118). Суппорт перемещается по Трем граням направляющих станины (а, Ь и с)- Причем передняя треугольная направляющая несет основную нагрузку, поскольку на нее направлена сила резания. При износе направляющих резец изменяет свое положение и точность обработки уменьшается. При этом именно неравномерность износа направляющих станины приводит к тому, что вместо цилиндрической поверхности на обрабатываемой детали возникнет конусность или бочкообразность, так как последствия равномерного износа направляющих полностью компенсируются за счет начальной установки резца. Износ направляющих суппорта по той же причине практически не оказывает влияния на точность обработки.  [c.356]


Жаропрочные деформируемые сплавы на железоникелевой, никелевой и кобальтовой основах (типа ХН77ТЮ, Х20Н80Т) или литейные (типа ЖС6-К, ВЖ36-Л2). Первые применяют для деталей, работающих при температурах 750—900° С, вторые — при температурах 900—1000° С в условиях больших нагрузок. Эти стали подвергают закалке и старению. Обрабатываемость деформируемых сплавов в 6—12 раз ниже, чем стали 45. Литейные сплавы по сравнению с ними обладают меньшей вязкостью, меньше при их обработке и силы резания. Наличие большого количества интерметаллидных включений и карбидов приводит к тому, что обрабатывать литейные сплавы инструментом из быстрорежущей стали практически нельзя из-за большого износа. Поэтому в основном применяют инструменты, оснащенные твердым сплавом, причем скорости резания назначают в 15—20 раз более низкие, чем. при обработке стали 45, как правило, они не превышают 8—10 м/мин.  [c.34]

Токарно-винторезный станок 16М16САУ Средневолжского станкостроительного завода имеет два привода подач от коробки подач и от регулируемого электродвигателя постоянного тока, установле н-ного на правом торце станины. Диапазон автоматического регулирования — от 40 до 880 мм/мин. Оно осуществляется в зависимости от припуска при сохранении постоянной силы резания. Производительность обработки на 30—40% выше, чем у обычного токарного станка, точность обработки — 2-го класса.  [c.212]

Устройство адаптивного управления фрезерными станками, оснащенными числовым программным управлением, предназначено для повышения производительности и точности контурной обработки и выполнено в виде отдельного пульта, устанавливаемого около станка совместно с основным устройством ЧПУ. Блок-схема устройства (рис. 134) состоит из трех отдельных блоков блока измерения сил резания Р , и их записи блока коррекции координатных перемещений X и F и блока оптимизации режимов резания. В блоке коррекции сигналы о деформации фрезы преобразуются в соответствующее число импульсов по каждой координате, которые алгебраически суммируются с числом импульсов исходной программы. Результирующий сигнал поступает на отработку в схему управления приводом подач. Блок оптимизации рассчитан на работу в фуккцио-нальном или предельном режиме. При предельном регулировании задается предельное значение результирующей силы резания. Если она превышается, включается световая сигнализация, предупреждающая оператора, работающего на станке. Изменение подачи при функциональном регулировании осуществляется в зависимости от результирующей силы резания. Оно производится посредством изменения частоты управляемого генератора в блоке оптимизации режимов резания. Значения коэффициентов настройки адаптивцого устройства задаются программой или устанавливаются вручную. Устройство, в зависимости от модификации, может применяться в станках как с шаговым, так и со следящим приводом.  [c.213]

Износ резца во второй половине обрабатываемой партии приводит к увеличению динамических погрешностей и рассеивания отклонений размеров обрабатывае.мых деталей вследствие возрастания радиальной составляющей силы резания. В последних подпартиях значение в увеличивается до 50% от начального. Влияние этого изменения в первых подпартиях после установки вновь заточенного резца мало ощутимо, так как размерный износ резца на 0,10 мм уже выводит размер детали из границ поля допуска, в то время как резец еще полностью сохраняет работоспособность, а сама по себе такая величина износа и затупления невелика и не вызывает заметных изменений радиальной силы резания.  [c.62]

На кафедре продолжались исследования жесткости технологической системы. В результате исследований В. А. Скрагана было выяснено влияние сил трения в подвижных соединениях станков на упругие деформации технологической системы при переменных силах резания. Было установлено наличие сдвига фаз между силой резания и деформацией узлов металлорежущих станков, обусловленное действием сил трения. Сдвиг фаз меладу силой резания и деформацией технологической системы в ряде случаев приводит к значительному усложнению закономерностей копирования погрешностей обработки и к более сложным расчетам точности формы обрабатываемых деталей. Во многих операциях механической обработки значительное время занимают периоды врезания и выхаживания, характеризующиеся неустановившимся процессом резания (переменной толщиной стружки), который может протекать быстрее или медленнее в зависимости от жесткости технологической системы и режимов обработки. Изучение этих процессов позволило более полно охватить вопросы влияния жесткости технологической системы на точность и производительность механической обработки.  [c.348]

Рассмотрим теперь малые колебания суппорта, вызванные действием некоторого винта R (i), являющегося функцией времени. К этому винту приводятся все внешние возмущения, действию которых подвергается суппорт в процессе обработки детали переменная составляющая силы резания, сила трения в направляющих и т. д. Эти возмущения представляют собой сложную систему сил определенного частотного спектра. Выделим среди сил-регулярные составляющие, лежащие в полосе частот (Он ю Шв, тогда соответствующий винт запишем в виде R osat. Проекции винта на оси у, z и моменты его относительно осей х, у, z будут правыми частями уравнений системы, описывающей динамику пространственного движения суппорта  [c.54]

Для измерения силы резания Р на станке попутного точения был сконструирован специальный тензометрический стакан, встраиваемый в двухчервячный привод суппорта. Такая система измерения позволила получить характер изменения сил в течение всего цикла обработки последовательно всеми резцами. Сила Ру измерялась по деформации шпинделя специальным датчиком, Для контрольного измерения силы Р параллельно записывалась расходуемая мощность.  [c.193]

Применение бйльших величин приводит к увеличению силы резания, температуры в зоне шлифования, износа круга, вибрации.  [c.669]

Суммарную силу резания Р принято разлагать на три составляющие по осям X, у, г (фиг. 6) Р. — тангенциальную, Р — радиальную и Р — осевую, составляющие усилия резания. Составляющая сила резания Р определяет крутящий момент и мощность привода станка или агрегатной силовой головки. Составляющая силы резания непосредственно на привод станка не воздейст-  [c.8]


Смотреть страницы где упоминается термин Приводы силами резания : [c.129]    [c.268]    [c.139]    [c.58]    [c.111]    [c.197]    [c.228]    [c.349]    [c.107]    [c.194]    [c.13]    [c.8]    [c.670]    [c.461]   
Смотреть главы в:

Станочные приспособления Издание 4  -> Приводы силами резания



ПОИСК



Сила резания

Сила резания при резании



© 2025 Mash-xxl.info Реклама на сайте