ПОИСК Статьи Чертежи Таблицы Тепловые процессы при сварке плавлением из "Технология электрической сварки металлов и сплавов плавлением " Под тепловыми процессами при сварке принято подразумевать повышение температуры свариваемых изделий (и присадочного материала) под влиянием источников сварочного нагрева, распространение теплоты по изделию и отвод ее в окружающую среду. Изменение температуры определяет, помимо явлений плавления и кристаллизации металла, прохождение целого ряда сопутствующих процессов в материале изделия — структурные превращения, объемные изменения, упруго-пластические деформации и т. д. Эти процессы оказывают значительное влияние на качество сварного соединения и всей конструкции в целом. [c.54] Подводимая к свариваемому изделию (присадочному металлу) теплота характеризуется величиной тепловой мощности и законом распределения ее в пространстве и времени. Эти характеристики во многом зависят от способа и условий сварки, формы соединения и других факторов. Рассмотрим эти вопросы применительно к наиболее типичным способам сварки плавлением. [c.55] Дуговая сваркгГ. Подводимая к сварочной дуге электрическая энергия частично расходуется на протекающие в дуге процессы (см. 4), частично же отдается окружающей среде путем кон-дуктивной, конвективной и радиационной теплоотдачи, светового излучения, звуковых колебаний и т. п. Поскольку доля нетепловых видов энергии в энергетическом балансе дуги сравнительно невелика, дугу по праву считают преобразователем электрической энергии в тепловую. Тепловую мощность дуги можно принимать пропорциональной тепловому эквиваленту электрической энергии, т. е. [c.55] Часть теплоты сварочной дуги бесполезно теряется в окружающей среде, а большая часть идет на нагрев и плавление присадочного и основного металлов, электродного покрытия либо флюса и на химические реакции в зоне сварки. Величина тепловой мощности дуги, теряемой в окружающее пространство, как и величина ф, зависит от многих трудноучитываемых параметров режима сварки. В связи с этим значения основных составляющих теплового баланса дуги принято определять, пользуясь понятием эффективного к. п. д., например, эффективный к. п. д. нагрева изделия дугой нагрева электрода дугой rig, нагрева флюса дугой Т]ф и т. д. [c.55] Величины эффективных к. п. д. определяются обычно экспериментальным путем и представляют собой отношение тепловой мощности данной статьи теплового баланса к тепловому эквиваленту электрической энергии дуги. Калориметрическими опытами установлено, что эффективный к. п. д. процесса нагрева изделия сварочной дугой т) зависит главным образом от условий ее горения (табл. 2-3). [c.55] В углекислом газе с порошковой проволокой. . . [c.56] В аргоне неплавящимся электродом. . [c.56] В аргоне плавящимся электродом. . [c.56] Вибрирующим электродом в струе жидкости. . . [c.56] сильно погруженные в металл изделия (например, при сварке под флюсом), нагревают и плавят металл частично и энергией столба Аи , поэтому их к. п. д. [c.56] Расчет по уравнению (2-10) для большинства открытых дуг длиной 3—6 мм дает к. п. д. 50—65%. При полном погружении дуги, когда потери излучения столба возможны только через зазоры между поверхностью ванны и стержневым электродом, к. п. д. по уравнению (2-11) оценивается примерно в 75--85%. [c.56] Теплота, затрачиваемая дугой на нагрев электрода, флюса или защитного газа (жидкости), также во многом зависит от характеристики дуги, условий и режима сварки. В табл. 2-3 приведены отдельные данные для этих величин, дающие представление о количестве теплоты, расходуемой дугой на нагрев электрода, флюса и защитного газа. [c.56] Наиболее близко такой схеме соответствуют дуги сравнительно небольшой мощности при сварке покрытыми электродами с небольшим количеством шлакообразующих в покрытии, а также дуги с неплавящимся электродом, горящие в среде аргона. При сварке мощными дугами электродами с качественным покрытием либо под флюсом значительная часть теплоты вводится в изделие через присадочный материал, шлак или флюс (см. рис. 2-14), что приводит к существенно более сложному распределению теплового потока. [c.57] Перенос теплоты в ванне приближенно можно представить следующей схемой. Сварочный ток в основном проходит через зону шлаковой ванны, ограниченную усеченным конусом, верхнее основание которого имеет диаметр электрода (активный конус шлаковой ванны). Максимальная температура этой зоны более 2000° С. По мере приближения к металлической ванне температура активной зоны несколько снижается вследствие уменьшения плотности тока и наличия интенсивных конвективных потоков. [c.58] Металлическая ванна аккумулирует значительную долю теплоты, выделяемой в шлаковой ванне. Таким образом, по сравнению с дуговой сваркой при электрошлаковой сварке в передаче теплоты от источника нагрева к основному металлу участвуют значительные массы жидкой среды (расплавленного шлака и металла), распределение теплоты в которой в большой степени определяется конвективными потоками. [c.58] Эффективность нагрева изделия существенным образом зависит от уноса энергии, обусловленного испарением материала изделия, отражением излучения в окружающую среду, вторичной и термоэлектронной эмиссией электронов, а также электромагнитным излучением. Электроннолучевая сварка характеризуется весьма малыми размерами пятна нагрева (до 10 мм ), значительно меньшими, чем у сварочной дуги (около 1 мм ). С увеличением плотности подводимой энергии возрастают потери теплоты, связанные с испарением металла в зоне нагрева. Это определяет границу предельной интенсивности для электронного луча при сварке плавлением примерно в пределах 10 —10 кВт/см . [c.59] Характерным для электроннолучевой сварки является глубинный подвод тепловой энергии к свариваемому изделию. Последнее объясняется свойством электронов луча проникать на определенную глубину (пробег электрона), теряя энергию на всем пути торможения. Значительное влияние на глубинный характер источника нагрева при электроннолучевой сварке оказывает давление луча, способствующее вытеснению жидкого металла из зоны активного пятна. Давление луча на жидкий металл в 5—10 раз превышает давление дуги при аргоно-дуговой сварке в сходных условиях и обусловливается испарением металла. [c.59] Сварка лазерным лучом. Эффективный к. п. д. нагрева изделия при лазерной сварке весьма невелик, что вызвано главным образом низким к. п. д. лампы накачки и кристалла рубина. Баланс энергии лазера при сварке ясен из рис. 2-16. [c.59] При теплообмене излучением теплота переносится между удаленными друг от друга нагреваемой деталью и окружающими предметами посредством электромагнитного излучения в соответствии с законом Стефана-Больцмана, т. е. тепловой поток пропорционален разности четвертых степеней абсолютных температур поверхностей, участвующих в теплообмене. При конвективном теплообмене теплота с поверхности изделия уносится жидкостью или газом, движение которых создается принудительно, а при естественной конвекции это движение обусловлено различием в плотности нагретых и ненагретых объемов. [c.60] В обычных условиях сварки при отсутствии заметных воздушных потоков величина составляет примерно 0,002— 0,005 Вт/см ° С. Выражение (2-12) часто используют и для описания общей суммарной теплоотдачи с поверхности изделия путем лучеиспускания и конвекции. Это возможно, поскольку погрешность от такого описания существенно проявляется только в зоне, нагретой выше 700—800° С, где радиационные тепловые потоки значительно превышают конвективные. При температурах поверхности 400° С и ниже роль лучеиспускания в теплоотдаче по сравнению с конвекцией невелика. [c.60] Вернуться к основной статье