Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы физико-металлургические

Процессы тепловые при сварке дуговой 55—57 лазерной 59—60 электроннолучевой 59 электрошлаковой 57—59 Процесс сварки, схема И—14 Процессы физико-металлургические при сварке плавлением 32—103 в защитных газах 77—81 дуговой 32—44 лазерной 52—54 под флюсом 76—77 покрытыми электродами 75—76, 308—314 электроннолучевой 49—52 электрошлаковой 44—49 Пушки электроннолучевые, системы 50—51  [c.762]


Прохождение упомянутых дисциплин предполагает достаточно глубокое изучение студентами таких вопросов, как классификация способов сварки, теоретические основы источников теплоты, используемых при сварке, физико-металлургические и тепловые процессы при сварке, процессы кристаллизации металла сварного шва и технологическая прочность сварных соединений и т. п.  [c.3]

Плавка чугуна в вагранке. В процессе плавки происходят следующие физико-металлургические процессы плавление металлической шихты и флюса науглероживание расплава образование шлака изменение состава и температуры чугуна.  [c.257]

Физико-металлургические основы процесса напыления. В различных областях металлургии применяется низкотемпературная плазма, степень ионизации составляет около 1%. Необходимым условием существования плазмы является ее квазинейтральность, т.е. отсутствие заметного избытка одних зарядов над другими.  [c.434]

В связи с этим в Ленинградском политехническом институте в течение 15 лет на кафедре обработки металлов давлением физико-металлургического факультета, а в последние годы на кафедре Машины и технология обработки металлов давлением механико-машиностроительного факультета проводятся экспериментальные и теоретические исследования основных закономерностей процесса профилирования.  [c.128]

Проблема свариваемости базируется в большей мере на теории тепловых процессов при сварке. В СССР разработаны и развиваются методы определения теплового состояния при сварке плоскостными, линейными и точечными источниками тепла элементов малых, больших и средних толщин при различных скоростях их перемещений по изделиям из сталей, а также из сплавов с различными физико-металлургическими свойствами. Разработана также теория тепловых полей при сосредоточенных и распределенных источниках нагревов в форме газового пламени и плазм, а также при электроконтактной стыковой и точечной сварке.  [c.131]

Анализ физики металлургических процессов в сплавах на железной и железоникелевой основе, в том числе различных  [c.218]

Все многообразие важнейших для металлургических процессов физико-химических свойств шлаков является функцией их состава и температуры и определяется их, строением в расплавленном состоянии.  [c.82]

Изучение упомянутых дисциплин предполагает достаточно глубокое изучение студентами таких вопросов, как классификация способов сварки, теоретические основы источников теплоты, используемых при сварке, физико-металлургические и тепловые процессы при сварке, процессы кристаллизации металла сварного шва и технологическая прочность сварных соединений и т.п. Поэтому основное внимание в данном учебнике уделено технологии сварки плавлением, а по сварочному оборудованию приведены только сведения, дополняющие курс источников питания. В разделах по технологии сварки авторы не стремились привести все данные о сварочных материалах, режимах и т.п., учитывая, что эти данные имеются в справочной литературе, и уделили основное внимание освещению основ выбора технологии.  [c.7]


Образование трещин при пайке чаще имеет место вследствие отрицательного влияния физико-металлургических факторов, сопутствующих процессу соединений. Приведем некоторые примеры.  [c.137]

Процесс кристаллизации сварочной ванны. Образование неразъемного соединения при сварке зависит как от физико-металлургических свойств каждого металла или сплава в отдельности, так и от самого процесса сварки. К основным элементам понятия свариваемости относятся 1) нагрев и последующее плавление металла  [c.58]

Производство электродов сводится к нанесению электродного покрытия различного состава на сварочную проволоку, химический состав и механические свойства которой регламентированы ГОСТ 2246—60. Электродные покрытия состоят из целого ряда компонентов и в зависимости от функций, которые они выполняют в физико-металлургическом процессе при сварке, условно делятся на шлакообразующие, газообразующие, раскислители, легирующие, ионизирующие, вяжущие. Некоторые компоненты  [c.353]

Физико-металлургические процессы при сварке плавлением  [c.32]

Учебное пособие предназначено для студентов специальности 110100 — Металлургия черных металлов , но может быть полезно и другим студентам-металлургам. Материал, изложенный в предлагаемом учебном пособии, доводится до студентов после того, как они прослушали курсы по физической химии, теории металлургических процессов, физико-химическим основам производства чугуна и стали. Поэтому авторы старались избегать сложных теоретических выкладок и повторов тех положений, которые затрагивались в указанных выше курсах. Это делает возможным использование учебного пособия студентами техникумов (колледжей) соответствующих специальностей.  [c.5]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]

Кроме самого общего, термодинамического, возможны и другие определения сварки, например сварка как технологический процесс создания сварных конструкций или как металлургический процесс и т. д. Однако именно энергия и пути ее преобразования — доминирующие факторы, определяющие характер процесса сварки как физико-химического явления.  [c.18]

ФИЗИКО-ХИМИЧЕСКИЕ И МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ ПРИ СВАРКЕ  [c.250]


Получение качественных жаропрочных отливок с заданными физико-механическими и эксплуатационными свойствами возможно только при умелом регулировании протекающих металлургических и термодинамических процессов в электроплавильных агрегатах. Задача технолога-металлурга заключается в том, чтобы довести до минимума содержание вредных примесей и газонасыщенность, что значительно снижает качество литейного жаропрочного сплава.  [c.269]

В четвертом издании (третье —в 1979 г.) описаны технология и оборудование основных производств черной и цветной металлургии. Приведены физико-химические основы металлургических процессов, технико-экономические показатели производства.  [c.8]

Шенк Г. Физико-химия металлургических процессов. Часть 1. 1935. 208  [c.172]

В большой научной статье Восстановление и окисление металлов , опубликованной впервые в 1926 г. ученый на основе глубокого анализа материалов производственной практики, собственных экспериментальных данных и данных других исследователей развивает теорию окислительных и восстановительных процессов, установив при этом физико-химические особенности превращения одних окислов железа i другие. Эта и иные работы Байкова пмеют огромное практическое значение. Они помогли выяснить сложные процессы, происходящие в металлургических агрегатах, и разработать условия для их оптимального протекания.  [c.176]

Успехи в разработке новых марок флюсов объясняются достижениями в области развития теории металлургических процессов автоматической сварки и наплавки, основой для которой послужили новейшие достижения советской науки, в первую очередь физики. Радиоактивные изотопы дали возможность понять физическую сущность сварочных процессов под слоем флюса, внести ясность во многие вопросы взаимодействия жидких металлов и шлаков, изучить главнейшие особенности процессов первичной кристаллизации сварочной ванны, которые определяют качество и долговечность металла шва, а тем самым — и сварного соединения в целом.  [c.124]

Для многих деталей машин и инженерных конструкций, которые имеют различные поверхностные трещиноподобные дефекты металлургического, технологического или эксплуатационного происхождения, стадия зарождения усталостной трещины может не лимитировать общую длительность процесса разрушения и в этом случае долговечность изделия будет определяться временем роста микротрещины до критических размеров. Изучение закономерности роста усталостных трещин с учетом влияния различных физико-химических факторов позволяет более глубоко понять механизм усталостного разрушения и вскрыть процессы, не выделяемые при испытании гладких образцов. Применение образцов с заранее выведенной трещиной ужесточает условия испытания и позволяет обнаружить влияние даже очень слабо-активных сред. Количественные данные о влиянии коррозионных сред на скорость роста усталостных трещин могут быть использованы для расчетов изделий с трещинами.  [c.86]

До 1941 г. было выпущено 306 инженеров-литейщиков, а с 1944 по 1972 гг.— 2587 инженеров по следующим специальностям Литейное производство черных и цветных металлов — 772 Металловедение, оборудование и технология термической обработки — 438 Физика металлов — 437 Порошковая металлургия — 408 Сталеплавильное производство — 196 Доменное производство — 135 Автоматизация литейных процессов — 102 Автоматизация металлургических процессов — 99.  [c.67]

Меченые атомы и соединения позволяют судить о поведении элементов в самых различных процессах. Радиоактивные изотопы могут быть использованы для контроля износа деталей машин и режущего инструмента, для исследования движения газов и шихтовых материалов, для оценки износа футеровки металлургических печей, для выяснения распределения серы и фосфора в сплавах, для разработки оптимальных режимов перемешивания сплавов и т, д. Меченые атомы используются для определения физико химических характеристик металлов и сплавов — упругости пара, коэффициентов диффузии и самодиффузии, диффузии металлов в окисные пленки, взаимной растворимости металлов и др.  [c.429]

Вопросы термодинамики твердых растворов приобрели особую актуальность в связи с развитием ряда областей физики и техники (жаропрочность, полупроводники и др.) и успехами теории металлургических процессов.  [c.5]

Аргоно-дуговая сварка, как и сварка под флюсом, может производиться как автоматами, так и полуавтоматами, использоваться для постановки точек специальными инструментами-пистолетами и др. В связи с применением алюминиевых сплавов для изготовления судовых конструкций, строительных резервуаров, химической аппаратуры и т. д. значение аргоно-дуговой сварки в промышленности будет неизменно повышаться. Перед сварщиками стоят задачи создания технологии, обеспечивающей получение швов без кристаллизационных трещин и пор, хорошего внешнего вида при сварке в разных пространственных положениях. Для развития этого способа необходимо изучение физико-технологических основ металлургических процессов сварки в аргоне разных металлов и рациональных технологических способов подготовки изделий под сварку, а также обеспечение специализированной автоматической аппаратурой для выполнения соединений различных типовых элементов конструкций.  [c.117]

Детали, материал которых не изменяет своих физико-механических свойств на протяжении всего технологического процесса изготовления. Такие детали изготовляют из материала, который сохраняет свои свойства, приданные ему при металлургическом процессе.  [c.97]


Физико-металлургические процессы, протекающие при сварке (па торце электрода, в дуге, ванне), должны обеспечить металл шва такого химического состава, при котором были бы получены необходимые его свойства отсутствие дефектов (трещин, пор и др.), равнопрочность с основным (свариваемым) металлолт и другие свойства, определяемые условиями его работы. Этого можно достичь легированием металла Н1ва присадочным металлом, покрьпием, флюсом либо применением особых методов защиты зоны сварки (защитных газов, вакуума) при сварке без добавочных материалов.  [c.83]

Следовательно, при сварке осуществляется сложная физи-ко-химическая обработка электродного и основного металла, нронсходян ая в газовой и нглаковой фазах и завершаюгцаяся в сварочной ванне, что приводит к образованию шва нужного состава с требуемыми свойствами эту обработку обычно называют металлургическими или физико-металлургическими процессами сварки.  [c.84]

Все нынешние достижения сварочной техники как а области технологических процессов сварки, так и в конструировании и производстве сварочного оборудования были бы невозможны без роста науки о сварке. Наша сварочная техника развивалась вместе с советской наукой вообш,е и наукой о сварке, в частности. Сформировались и крепли ведущие научные направления в области сварки. Ученые разрабатывали физико-металлургические и тепловые основы сварки, аучные основы механизации и автоматизации сварочных процессов, создавали теорию прочности сварных конструкций и соединений. Они же участвовали в конструировании сварочного оборудования.  [c.292]

Сун1.естБснное влияние на механические характеристики оказывает также анизотропия сварных швов, наличие мягких и твердых прослоек и других отклонений, в >1званных особенностями металлургических процессов и физико-механических свойств материалов.  [c.113]

Физико-химические свойства шлаков. В процессе плавки в электропечах образуются побочные продукты продукты окисления или угар химических элементов (т.е. образуются неметаллические включения вследствие раскисления сплава) кремнезем, глинозем, оксид магния и др. (поступают с металлической шихтой). В комплексе эти побочные продукты представляют собой расплавленнЕяй металлургический шлак.  [c.277]

Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

Теорема о системе размерных и физико-механических параметров технической поверхности. Если при фиксированных материале детали, металлургических условиях его изготовления, тепловой обработке и абсолютных размерах конструкции состояние системы S геометрических и физико-механических параметров технической поверхности в их взаимосвязи и взаимодействии в каждый данный момент характеризуется целостностью, определенностью геометрической формы поверхности при снятии внешней нагрузки и переход системы из состояния i в состояние i - - 1 заключается в. изменении указанного ее свойства, причем комбинации уровней параметров определяют состояние системы S, имеющей множество Е возможных состояний и F — функция распределения в , а для каждого промежутка времени от момента S до i > S существует линейный и унитарный оператор H t (Е) = = Fj, при помощи которого, зная функцию распределения F в момент времени s, можно определить функцию распределения F, для момента t, а оператор (F) удовлетворяет при любых S < и < t уравнению = H tHsay то изменение качества технической поверхности протекает по схеме марковского процесса. Любое последующее состояние системы и в том числе нарушение целостности поверхности вследствие усталостного разрушения или износа или изменение ее формы по причине пластических деформаций, ведущее к изменению контактной жесткости, зависит от того состояния, в котором она пребывает, и не зависит от того, каким образом она пришла в данное состояние. Отсюда следует, что качество поверхности в рассматриваемом смысле инвариантно по отношению к технологическим операциям обработки. Роль технологической наследственности состоит в определенном вкладе в данное состояние системы предшествующих операций, но не в специфичности признаков самих этих операций (кинематика, динамика, тепловое и физико-химическое воздействие и т. п.).  [c.181]

Все большая потребность в металлах, необходимость получать для изготовления различных изделий сплавы с разными свойствами заставили многих представителей науки XVIII в., прежде всего физиков и химиков, заняться разработкой теоретических основ металлургических процессов, постараться выяснить зависимость свойств металла от его состава, методов получения и характера обработки. За границей, например, вопросами совершенство вания методов получения и обработки железа занимались видный французский естествоиспытатель Рене Реомюр (1687—1757) и ряд других исследователей.  [c.14]

Развитие металлургии, как и всего народного хозяхь ства Советского Союза, основывается на широком использовании достижений науки, которая все н большей степени становится одной из производительных сил общества. В советской металлургической промышленности широко применяются механизация и автоматизация ироизводствеи-ных процессов. Огромное внимание уделяется разработке новых металлических сплавов и повышению качества выплавляемых металлов. Глубокое изучение физико-химических основ металлургического процесса позволило нашим ученым и инженерам достичь больших успехов в интенсификации производства, нарастить мощности металлургических агрегатов.  [c.215]

Труды другого видного советского металлурга ав ад. Михаила Михайловича Карнаухова (1892—1955) были посвящены изучению физико-химических основ сталеплавильных процессов. Ученый активно участвовал в ( озда-нии металлургической промышленности СССР, работая над проектами новых заводов. Много лет он вел педагогическую работу в Ленинградском политехническом институте и других вузах. Его многотомный труд Металлургия стали , вышедший почти четыре десятилетия тому назад, явился важнейшим учебным пособием для ряда поколений советских металлургов.  [c.218]

Шенк Г. Физико-химия металлургических процессов Химико-металлург. реакции и их законы.— Харьков Киев Гостехиздат УССР, 1935.— 384 с.  [c.176]

Широ кое внедрение вакуумных процессов в химическую, металлургическую, пищевую про1мышлен ность, а также созда Ние летательных а ппарато в для полета на большой высоте и в космическом простраи-стве требуют изучения физики переноса тепла в разрежеином пространстве и создания инженерных методов тепловых расчетов в этих условиях.  [c.532]



Смотреть страницы где упоминается термин Процессы физико-металлургические : [c.762]    [c.762]    [c.762]    [c.240]    [c.2]    [c.176]    [c.175]    [c.198]    [c.240]    [c.3]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.0 ]



ПОИСК



Металлургические и физико-химические процессы при дуговой сварке

Металлургический к оке

Процессы физико-металлургические в защитных газах

Процессы физико-металлургические дуговой

Процессы физико-металлургические лазерной

Процессы физико-металлургические под флюсом

Процессы физико-металлургические покрытыми электродами

Процессы физико-металлургические при сварке плавлением

Процессы физико-металлургические электроннолучевой

Процессы физико-металлургические электрошлаковой

ФИЗИКО-ХИМИЧЕСКИЕ И МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ ПРИ СВАРКЕ Термодинамические и кинетические основы металлургических процессов

Физико-химические и металлургические процессы

Физико-химические и металлургические процессы при сварке



© 2025 Mash-xxl.info Реклама на сайте