Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние структуры у-фазы на механические свойства

Влияние олова на механические свойства меди аналогично влиянию цинка, но проявляется более резко (рис. 447). Ул<е при 5% Sn пластичность начинает падать. Прочность начинает падать при 20% Sn, когда в структуре слишком много б-фазы и сплав становится хрупким.  [c.613]

Заэвтектические бористые стали, обработанные ультразвуком, имеют более высокие значения прочности при 600° С и пластичности при 1100° С. Прессованием обработанных ультразвуком слитков на горизонтальном 1500-т прессе получены трубы диаметром 71, толщиной стенки 6 и длиной 600 мм. Контрольные заготовки при прессовании разрушались из-за наличия крупных частиц боридной фазы. Влияние ультразвуковых колебаний на структуру и механические свойства эвтектических бористых сталей с 2% В значительно меньше, что связано с отсутствием крупных частиц боридной фазы.  [c.180]


Редкоземельные металлы, вводимые в состав сплава в виде микродобавок, оказывают значительное влияние на структуру и механические свойства титана. Исследования, проведенные в лаборатории сплавов редких металлов Института металлургии Академии наук СССР, показали, что лантан, церий, неодим и иттрий являются по отношению к титану стабилизаторами фазы а.  [c.97]

Известно, что в процессе нагрева деформируемые магниевые сплавы не претерпевают каких-либо фазовых превращений. Степень растворимости упрочняющих фаз также не может оказать существенного влияния на скорость и продолжительность нагрева этих сплавов. Высокая теплопроводность магниевых сплавов позволяет нагревать их перед деформацией с большой скоростью без опасения возникновения термических напряжений в слитках. При максимальном перепаде температур между центральной и наружными зонами 14°, который был установлен экспериментально для заготовок разных размеров, трещин обнаружено не было. Поэтому нагрев магниевых сплавов в практике кузнечно-прессовых цехов может быть допущен с высокой скоростью. Продолжительность выдержки металла в нем при данной температуре имеет для магниевых сплавов первостепенное значение. Она оказывает влияние не только на пластичность сплава, но главным образом на структуру и механические свойства деформированных полуфабрикатов.  [c.216]

Большое влияние на появление внутренних напряжений и упрочнение оказывают процессы, связанные с распадом при пластическом деформировании твердых растворов, выделением по плоскостям скольжения продуктов этого распада, а также попаданием меледу блоками осколков зерен, резко увеличивающих силы взаимодействия между отдельными элементами кристаллической решетки. При наличии в поверхностном слое после закалки структуры остаточного аустенита причиной упрочнения может явиться его распад и превращение в мартенсит. Это превращение сопровождается увеличением удельного объема, что также приводит к возникновению остаточных напряжений сжатия. Наряду с этим идет измельчение мартенсита, превращение его в мелкоигольчатую структуру, которое сопровождается повышением всех механических свойств металла. Изменение механических свойств поверхностных слоев сопровождается и выпадением карбидной фазы, которое наблюдается при обработке ряда сталей.  [c.97]

Следует, однако, различать явления термической и механической малоцикловой усталости, происходящей при высокой постоянной температуре. Термическая усталость связана с непостоянством температуры в цикле, обусловливающим протекание ряда характерных для этого явления процессов. При термической усталости циклическое пластическое деформирование происходит в определенном интервале температур и в полуциклах нагрева и охлаждения оказывает различное влияние на характер изменения структуры и свойств материала. Например, помимо естественного различия физико-механических свойств материала при максимальной и минимальной температурах цикла может существенно отличаться характер происходящих в структуре процессов (растворение или выделение частиц второй фазы в гетерогенных технических сплавах).  [c.7]


В результате закалки а-сплавов из р-области, как было показано выше, образуется структура мартен-ситного типа, но не являющаяся пересыщенным твердым раствором. Поэтому механические свойства сплавов, не содержащих р-стабилизаторов или содержащих их в пределах растворимости в а-фазе, изменяются незначительно (табл. 15). Указанное обстоятельство обусловливает отличную свариваемость а-сплавов, так как значение механических свойств околошовной зоны и зоны термического влияния при сварке а-сплавов остается практически на уровне значения их для основного металла.  [c.56]

Характер и степень влияния примесей во многом определяются и химическим составом сплава. Добавление легирующего элемента может значительно сокра-ш,ать предел растворимости примесных элементов в а-фазе титана. Кроме того, легируюш,ие элементы, обладающие большей химической активностью, чем титан, могут образовывать с примесями прочное химическое соединение. И в том и в другом случае отмечается весьма существенное понижение пластичности и вязкости сплава. Примером различной чувствительности сплавов разной легированности к воздействию примесей может служить приведенное в табл. 19 изменение величины ударной вязкости сплавов Ti—6А1—1,5V и Ti—6А1—1,5V—5Zr в зависимости от содержания кремния. Влияние качества структуры полуфабриката, определяемой условиями его термопластической деформации и габаритами, было рассмотрено в предыдущих разделах. В соответствии с изложенным при выборе сплава по справочным данным необходимо учитывать, что приведенные значения механических свойств сплава относятся, как правило, лишь к определенному виду полуфабриката после вполне определенной термической обработки. При изготовлении полуфабриката другого типа и других размеров можно получить комплекс свойств, существенно отличающийся от справочных данных.  [c.65]

Изменения скорости охлаждения швов при сварке углеродистых и низколегированных сталей, как показала С. А. Островская, оказывают существенное влияние на характер вторичной кристаллизации (выделения перлитной составляющей) и во многом определяют механические свойства сварных швов. При сварке аустенитных сталей и сплавов изменение условий теплоотвода, скорости охлаждения, мало влияет на вторичную структуру шва оно сказывается главным образом на полноте выделения избыточной фазы по границам зерен аустенита. Чем медленнее остывает сварной шов, тем большее количество избыточной фазы выпадает по границам зерен.  [c.122]

После закалки и высокого отпуска (улучшения) структура стали представляет собой сорбит — ферритно-карбидную смесь с зернистой формой карбидной фазы. Высокие механические свойства сорбита обусловлены влиянием легирующих элементов на прочность феррита, а также Дисперсность и количество карбидной фазы.  [c.258]

Сплавы на основе е- и 7-твердых растворов нестабильны и уровень их механических свойств определяется степенью стабильности аустенита. Распад твердого раствора под влиянием температуры или деформации приводит, как правило, к повышению прочностных и к снижению пластических характеристик. Изменение свойств происходит вследствие возникновения дефектов упаковки, формирования тонкой структуры и образования новых фаз в разных сочетаниях и различных количествах [1].  [c.93]

ВЛИЯНИЕ СТРУКТУРЫ у-ФАЗЫ НА МЕХАНИЧЕСКИЕ СВОЙСТВА  [c.140]

Влияние химического состава на механические свойства отожженных латуней показано на рис. 155. При содержании цинка до 30% растут одновременно и прочность, и пластичность. Далее пластичность уменьшается, вначале за счет усложнения а-твердого раствора, а затем происходит резкое ее падение в связи с появлением в структуре хрупкой Р -фазы. Прочность увеличивается до содержания цинка около 45%, а затем уменьшается так же резко, как и пластичность.  [c.269]

Железо содержится в исходном алюминии, цинк, медь и марганец — в отходах производства (в сплавах, где они являются легирующими компонентами). Небольшие добавки железа (до 0,3%) практически не оказывают влияния на механические свойства сплавов А1—Mg—51. При больших содержаниях железа (0,5— 0,7%) заметно уменьшается склонность сплавов к горячим трещинам при литье, измельчается структура готовых полуфабрикатов благодаря повышению температуры рекристаллизации алюминия. Прочность и пластичность сплавов А1—Mg—51 с увеличением количества железа несколько снижается вследствие образования нерастворимых интерметаллических фаз грубой формы (типа А1—51—Ре, А1—Ре—Мп-51, А1—Сг-Ре—51, А1—Мп—Ре), в состав которых входят элементы, играющие положительную роль в упрочнении при термической обработке. Декоративные свойства сплавов А1—Mg—51 с ростом содержания железа в сплавах ухудшаются, поэтому в сплавах, к которым предъявляются повышенные требования в отношении декоративного вида изделий, 70  [c.70]


В сплавах, содержащих углерода от 4,3 до 6,67% (сплав VII), в точке 1 начинается образование кристаллов цементита. Чтобы отметить характер выделения, та-К0Й цементит называют первичным и обозначают Ui. Поскольку при кристаллизации Ц1 выделяется из жидкой фазы, его кристаллы обычно бывают крупными (грубые выделения). В точке 2 происходит эвтектическое превращение. Структура сплава между линиями E F и PSK Цг+Л (А+Ц). При 72Т С происходит эвтектоидное превращение аустенита. Окончательная структура сплава (ниже 727° С) Цх+Л (П+Ц) (рис. 97, в). Химические и физические свойства Ц1, Цп, Цщ одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений.  [c.214]

Влияние структуры на пластичность [30] обусловливается главным образом механическими свойствами фаз при температурах деформации, формой выделения или дисперсностью фаз, характером их распределения (по границам кристаллитов, равномерное и неравномерное распределение по поверхности и в объеме кристаллитов) и температурой плавления фаз.  [c.138]

При всех режимах термообработки на сплаве ВЖЛ12У (кроме 1230" С, т=4 ч) происходят несущественпые изменения структуры, связанные с частичной коагуляцией, растворением старой и образованием новой мелкодисперсной "у -фазы. Дендритная структура сохраняется. Проведенные испытания показали положительное влияние термообработки на механические свойства и термическую усталость как в вакууме при активном растяжении, так и в условиях испытания, близких к эксплуатационным, Раз-  [c.155]

Деформирование и прочность композитных материалов (КМ) определяется их геометрической структурой, физико-механическими свойствами наполнителя и связующего, качеством адгезионного соединения компонент (фаз) [1-5]. Влияние технологии изготовления конструкции из КМ может проявляться также в возникновении остаточных напряжений [2, 5]. Не все эти факторы в силу разных причин в достаточной мере учитываются в теоретических механических моделях КМ. Наиболее развитой моделью КМ является континуальная теория первого порядка (теория эффективных модулей), в которой неоднородная структура заменяется квазиоднородной средой с приведенными характеристиками, определяемыми через параметры реальной структуры. Такой подход позволяет решить широкие классы важных задач механики КМ для слабоградиентных по сравнению с характерными размерами структуры динамических процессов (длинные волны, низкочастотные колебания и др.). Присущие КМ с регулярной структурой особенности колебаний и распространения волн могут быть описаны только в рамках структурной (кусочно-однородной) модели. Такой подход развивается в настоящей работе. Наряду с геометрической дисперсией, обусловленной неоднородностью структуры КМ, анализируется также диссипативная дисперсия, обусловленная вязкоупругими свойствами компонент. На феноменологическом уровне учитывается также влияние несовершенств адгезионного межфазного соединения и остаточных технологических напряжений на характеристики распространения волн в слоистых КМ.  [c.819]

Отрицательное влияние вылеживания на механические свойства сплавов системы А1—Mg—51 менее заметно при более высоких температурах искусственного старения, что, по мнению Пэшли и других авторов, связано с более дисперсной структурой выделения второй фазы.  [c.73]

Механические свойства. По данным [18, 19] присадка 0,1 и 5% магния незначительно изменяет твердость иттрия технической чистоты (98%), но заметно улучшает его деформируемость, повышая допустимую степень обжатия при прокатке от 4—6% до 24—28%. Согласно [16] сплав с 24% ig, полученный взаимодействием УРз с жидким магнием, обладал большой хрупкостью. Влияние иттрия па механические свойства и деформируемость магния изучали в работах [2, 4, 9, 12, 15, 20, 21]. По данным [15] микрогвердость фазы со структурой (Mg) с повышением содержания иттрия от О до 4,15 н 13,88% возрастает от 42 до 70 и 106 кГ мм . Микротвердость хими-  [c.714]

Кристаллическая фаза оказывает большое влияние на физико-механические свойства. При переходе полимера из аморфного в кристаллическое состояние повы шается прочность на разрыв, твердость, теплостойкость. Кристаллическая структура увеличивает мем мо-  [c.813]

Модификация структуры основывается на влиянии изменений параметров микроструктуры (размер зерна, кристаллографическая текстура, плотность дислокаций) на механические свойства и износостойкость материалов. Примерами структурной модификации приповерхностного слоя являются дробеструйная обработка, накатывание роликом, вибрационное накатывание, ультразвуковая упрочняющая обработка, алмазное выглаживание, электромеханическое упрочнение 13]. Известно, ч го поверхностная закалка после нагрева приводит к уменьшению размера зерен вблизи поверхности и увеличению локального напряжения течения. Поэтому поверхностный нагрев с применением направленных источников энергии, таких, как лазер и электронный луч, может использоваться для оплавления и последующего быстрого затвердевания (кристаллизации) поверхностного слоя. Названные мегоды обработки вызывают yny4nJ HHe размеров зерна, формирование мелкой, субзеренной структуры, увеличивают концентрацию выделений и упрочнение, приводят к появлению новых полезных фаз. растворению или удалению инородных включений [19]. Перечисленные эффекты структурной модификации делают ее весьма перспективной, а развитие метода входит в число актуальных задач гриботехнологии.  [c.39]

Формирование всех свойств титановых сплавов определяется главным образом фазовым составом и структурой. Например, молибден, ванадий, ниобий, тантал, называемые изоморфными 3-сга6илизаторами, с0-фаэой титана образуют непрерывный ряд твердых растворов и во всем интервале концентраций фазовый состав сплавов (в отожженном состоянии) может быть представлен лишь двумя фазами <а и (3). Подавляющее большинство других элементов (а- и (3-стабилизаторов) образуют с титаном интерметаллические соединения (как правило, бертоллидного типа). При этом даже в области твердых растворов всегда могут быть созданы условия, при которых возможно образование предвыделений этих соединений, трудно выявляемых методами структурного анализа, но оказывающих исключительно сильное влияние на физические, электрохимические и механические свойства сплавов.  [c.12]


В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Механические свойства малоуглеродистых сталей со структурой нестабильного аустенита в значительной степени обусловлены дополнительным упрочнением, вызванным влиянием Ё-мартенсита и мартенсита деформации. При появлении в структуре а-фазы наблюдается значительное повышение твердости сталей (с 92 до 107 HRB), закаленных с 850—650 °С. Временное сопротивление возрастает с 93 до 108 кгс/мм . Относительное удлинение с 70% и относительное сужение с 53% при 14,11% Сг падает до 5—7% при 22,43% Сг, а ударная ьязкость — с 26 до 0,2 кгс м/см .  [c.105]

Большинство промышленных а + р-сплавов титана кроме р Стабилизаторов содержат алюминий, который преимущественно растворяется в а-фазе и упрочняет ее. При этом воздействие Р-ста-билизаторов и алюминия на свойства сплавов определяется как степенью влияния их на свойства а- и р-фаз, так и соотношением фаз в структуре сплава. Влияние р-стабилизаторов на механические свойства титана и сплавов с основой Т1—6А1 было подробно исследовано в работе [58]. Увеличение содержания р-стабилизи-  [c.66]

Обычно утверждают, что на диаграммах равновесия показаны структуры сплавов в равновесных условиях однако из сказанного выше видно, что это утверждение правильно только отчасти. В обычных диаграммах равновесия не учитываются размеры, форма и взаимная ориентировка отдельных кристаллов, хотя эти характеристики очень важны при определении механических свойств сплава и должны быть приняты во внимание при рассмотрении условий абсолю(тного равновесия в строгом термодинамическом мы лe.i a диаграммах равновесия металлических систем показаны количество и природа, а в некоторых случаях, состав отдельных фаз, присутствующих в сплаве данного состава при данной температуре, в обычных практических условиях, при которых влиянием поверхности, размеров, формы и ориентировки можно пренебречь.  [c.9]

Согласно некоторым наблюдениям [36], у ячеистых выделений т -фазы в сплаве Fe-24Ni-21 r-l,3Ti-0,3Si-0,004 направления плотной упаковки параллельны таковым в смежном зерне. Аналогичные наблюдения сделаны [34, 37] и на других железоникелевых сплавах. Увеличение расстояния между соседними ламелями т)-фазы (огрубление ячеистой структуры), равно как и огрубление ячеистой структуры с выделениями у -фазы, нередко приводит к сильному ухудшению механических свойств. Однако данные закономерности нельзя считать однозначно установленными потерю пластичности нередко объясняют вредным влиянием ячеистых выделений 7 -фазы, тогда как согласно другим работам [28, 29], это может быть связано с сопровождающим этот процесс образованием ячеистых карбидных выделений  [c.228]

Свойстваполуферритныхста- - 60 лей в сильной степени зависят от количественного соотношения а- и Y-фаз. Чем больше в стали -у-фазы при высоких температурах, тем сильнее влияние термической обработки на механические свойства и измель-чение структуры. В том слу-чае, когда ферритная составля- I ющая преобладает, сталь приобретает большую склонность к росту зерен при перегреве выше 850° С, что приводит к крупно-зернистости и хрупкости (рис.  [c.169]

Изменение содержания легирующих элементов (кобальта, кремния, нитридообразующих ванадия, ниобия, азота) сопровождается изменением количества е-мартенсита в исходной структуре от 65 до 95%, при этом состав остается двухфазным. Таким образом создалась возможность проанализировать влияние количества е-мартенсита и упрочняющей карбидной фазы на механические свойства (ё + y)-сплавов.  [c.270]

Таким образом, анализируя механизм формирования структурных зон в слитке и причины появления наиболее распространенных дефектов, можно наметить пути получения качественного слитка. Чем больше загрязнен металл, тем в большей степени свойства его зависят от величины зерна. Наилучшие свойства обеспечивает слиток с однородной плотной мелкозернистой структурой и равномерным распределением примесей и дислокаций по объему. В этом плане идеальной была бы равноосная мелкозернистая структура, при которой однородность рассредоточения примесей максимальна, а вероятность возникновения напряжений, связанных с различной ориентацией и зачастую превышающих силы сцепления [85], минимальна. Но практически получить слиток с подобной структурой удается в очень редких случаях. Легче регулировать соотношение структурных зон и величину зерна в каждой из них. Наружная зона замороженных кристаллов (если она образуется) из-за наличия поверхностных дефектов часто удаляется либо механическим путем, либо окислением в нагревательных колодцах. Центральная равноосная зона во многих случаях разнозерниста, загрязнена примесями и поражена пористостью. Для ее улучшения пытаются использовать различные методы воздействия на процесс кристаллизации слитка. Столбчатая зона более однородна, если границы кристаллов не обогащены хрупкими фазами. При направленной кристаллизации непрерывного плоского слитка можно получить однородную плотную столбчатую структуру. Желательно иметь тонкие кристаллы, приближающиеся к нитевидным (Е. И. Гиваргазов, Ю. Г. Костюк [84, с. 242—249]), с малой плотностью дислокаций, и чтобы границы их не были обогащены хрупкой составляющей. Чем тоньше столбчатые кристаллы, тем более равномерно распределены примеси в слитке. При помощи модификаторов можно получать слитки, состоящие из тонких столбчатых кристаллов, регулировать соотношение зон и величину зерна в них. Модифицирование, кроме того, оказывает влияние на дегазацию и повышение механических свойств, что приводит к уменьшению пористости и трещин в слитке.  [c.106]


Другие металлы, например стали аустенитного класса (нержавеющие, жаропрочные), обладают большой чувствительностью к наклепу. Даже малая степень деформации заметно изменяет их механические свойства. Последнее связано с изменением структуры аус-тенитной стали под влиянием пластической деформации и температуры, вызывающих быстрый переход аустенитной структуры в мар-тенситную с выделением мелкодисперсной фазы твердых карбидов.  [c.11]

Система ниобий—титан—кислород исследована очень слабо. В работе [181] установлено увеличение растворимости кислорода в ниобии при введении титана.Однозначно [181] не удалось идентифицировать присутствующие фазы в 2- и 3-фазных областях (рис. 97), однако по результатам рентгеновских исследований предположили наличие гексагональной фазы со структурой типа а-Т1, TiO иОЦК твердого раствора на основе ниобия. По [182] титан уменьшает растворимость кислорода в ниобии. Однако независимо от влияния титана на растворимость кислорода в ниобии сплавы системы ниобий—титан—кислород не представляются интересными с точки зрения дисперсионного упрочнения, ибо выделяющиеся в этой системе окислы по своим термодинамическим и механическим свойствам не являются эффективными упрочняющими фазами.  [c.246]

При исследовании влияния большого числа циклов (до 75) на механические свойства стали О8Х18Н10Т было выявлено, что прочностные свойства с увеличением числа циклов изменяются немонотонно. Наибольшее повышение НВ, Ов и <7т наблюдали после первых восьми циклов, а затем — снижение. На 25-м цикле, например, Твердость вновь была экстремально большой, а после 32-го — снизилась на 200 МПа. Отмеченная периодичность была обнаружена и на других сплавах [127]. Такое изменение свойств объясняется в основном регулярно сменой в преобладании процесса упрочнения фазовым наклепом над разупрочнением от диффузионных процессов перестройки кристаллической решетки при рекристаллизации. Однако возрастание немонотонной зависимости механических свойств от числа циклов может быть обусловлено действием дисперсионного упрочнения. Так как в аустенитных сталях наряду с основным ау-превращением идет и ае-превращение, то имеется возможность повлиять на структуру и свойства этих сталей, используя главным образом а е-превращение. В этом случае температурный интервал термоциклирования резко сужается. Так как у стали 0Х18Н10Т а е-превращение идет при температуре ниже комнатной, то был опробован режим ТЦО с охлаждениями до —196 °С (в жидком азоте) с отогревами на воздухе до комнатных температур [218]. Установлено, что эффект упрочнения в этом случае обусловлен измельчением исходного размера зерна вследствие появления большого числа пластин е-фазы. Это улучшает основные механические свойства стали XI8Н1 ОТ [139].  [c.108]

Меньшая степень влияния ВТЦО на свойства деформируемых сплавов объясняется тем, что они менее легированы и в их структуре сравнительно мало фаз с отличными от алюминиевой матрицы теплофизи-ческими характеристиками. Однако характерные для деформируемых сплавов интерметаллиды в мелкодисперсном виде увеличивают протяженность межфазных границ, что, в свою очередь, является положительным фактором при возникновении структурных напряжений. Поэтому в какой-то степени при ВТЦО деформируемых сплавов имеют место процессы, характерные и для литейных. Это обстоятельство, очевидно, служит причиной интенсификации диффузии и повышения механических свойств деформируемых сплавов по сравнению со стандартными режимами обработки.  [c.145]

Наиболее существенное влияние на характер -фазы и механические свойства сплавов оказывают температура превращения и скорость охлаждения. Если превращение развивается при высоких температурах, т. е. в области малых скоростей о.хлаж-дения до ступенчатого понижения температуры начала превращения, то образуются более длинные и широкие пластинки -фазы. Это связано со значительной величиной исходного зерна -фазы и огрублением ее тонкой структуры. При больших степенях переохлаждения, начиная с некоторых критических скоростей охлаждения, -фаза приобретает характерную мелкоигольчатую структуру с более высокой плотностью дефектов кристаллической решетки. Такая структура отличается более высокими твердостью и прочностью и пониженной пластичностью. Это проявляется при охлаждении со скоростями, выше которых интервал превращения смещается в область более низких температур,  [c.36]

Недостатком сплава АЛ9 является сравнительно плохая обрабатываемость резанием, а также низкая жаропрочность, в связи с чем он не может быть рекомендован для работы при температуре выше 185° С. Согласно диаграмме состояния А1—81—Mg, алюминий образует твердые растворы с магнием и кремнием, растворимость которых возрастает с повышением температуры. При отпуске из закаленного состояния в структуре сплава АЛ9 обнаруживаются ультрадисперсные частицы фазы Mg28i. Такой характер образования фазы Mg281 оказывает сильное влияние на изменение механических и других свойств сплавов. Сплав АЛ9 очень восприимчив к упрочняющей термической обработке, и поэтому в промышленности применяется в двух состояниях в закаленном (Т4) и в закаленном и состаренном (Т5).  [c.343]

Эти качественные наблюдения хорошо согласуются с установленным ранее [18] влиянием присадки 0,186% Те на механические свойства золота высокой чистоты. Временное сопротивление золота при введении в него таких небольших количеств теллура снижается от 11,0 до 0,1 кГ/ мм , а относительное удлинение — от 30,8% до 0. Сплав со структурой метастабильной фазы АизТе5 может быть прокатан вхолодную [8]. По данным [19] микротвердость полученного сплавлением компонентов соединения АиТег с орторомбической структурой составляет 129—153, с моноклинной структурой — 210—  [c.267]


Смотреть страницы где упоминается термин Влияние структуры у-фазы на механические свойства : [c.205]    [c.113]    [c.373]    [c.307]    [c.44]    [c.185]    [c.26]    [c.146]    [c.180]    [c.114]    [c.290]   
Смотреть главы в:

Фазовый наклеп аустенитных сплавов на железо-никелевой основе  -> Влияние структуры у-фазы на механические свойства



ПОИСК



141 — Влияние на свойства

П фазы

Свойства с а-структурой

Фазы и структуры



© 2025 Mash-xxl.info Реклама на сайте