Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Импульс жидкости и газов

ИМПУЛЬС жидкости и ГАЗОВ  [c.278]

Применительно к потокам жидкостей и газов более удобна несколько иная (гидродинамическая) форма уравнения для количества движения, которую получил впервые Эйлер. Выведем уравнение количества движения в гидродинамической форме. Для этого выделим элементарную струйку (рис. 1.7) и проведем два нормальных к ее оси сечения 1 и 2. Разобьем всю массу жидкости, заключенную в объеме 1—2, на большое число частей так, чтобы В пределах каждой из них, имеющей массу т, скорость движения W можно было считать постоянной, и установим связь между проекциями сил и количества движения на ось х. Согласно уравнению (87) сумма проекций импульсов всех сил, приложенных к массе жидкости 1—2, равняется изменению проекции суммарного количества движения  [c.37]


Для течения в горизонтальных и слабонаклонных трубах приближенная методика расчета условий взаимных переходов между различными структурами, предложенная в [71], рассматривает в качестве базового расслоенный режим течения. Для этой структуры одномерные уравнения сохранения импульса записываются отдельно для потоков жидкости и газа. При известном (или постулируемом) законе трения на межфазной границе такой подход позволяет рассчитать доли сечения, приходящиеся на каждую из фаз в рассмотренном режиме течения, и градиент давления в трубе. (В 7.7 подобный подход будет рассмотрен нами достаточно детально.) Если бы жидкость и газ двигались в трубе со своим массовым расходом в отсутствие другой фазы, то соответствующие градиенты давления за счет трения выражались бы известным законом Дарси—Вейсбаха [26]  [c.306]

Схема кольцевого подъемного течения в вертикальной трубе дана на рис. 7.17. Такое течение можно рассматривать как раздельное движение потоков жидкости и газа (пара), для каждого из которых справедливо уравнение сохранения импульса (7.26). В адиабатных условиях в канале постоянного сечения отсутствуют потери давления, связанные с ускорением потока. На межфазной границе действует касательное напряжение, направленное противоположно в газовой и жидкой фазах. Форма межфазной поверхности — цилиндр диаметром d = d -28, где 5 — средняя толщина жидкой пленки.  [c.327]

Движение жидкостей и газов определяется процессами переноса импульса, тепла и вещества, поэтому в книге показывается общность уравнений этих переносов, рассматриваются теория подобия, движение в трубах, а также изучается не только динамический пограничный слой, но и тепловой, и диффузионный. Такое изложение приближает курс к механике сплошных сред.  [c.3]

При изучении законов переноса в потоках жидкостей и газов рассматриваются три величины векторная — импульс, или количество движения, и две скалярные — тепло и вещество. В движущемся потоке в общем случае наблюдается неоднородность таких величин, как скорость, температура и концентрация вещества. Вследствие этой неоднородности в среде возникают явления переноса импульса, тепла и массы.  [c.13]

Применение законов сохранения массы, импульса, момента импульса и энергии к движущимся жидкостям и газам дает систему основных уравнений механики жидкостей и газов.  [c.61]


Измерение расхода жидкости и газа. Принципиальная схема частотного расходомера жидкости, разработанного в Институте автоматики и телемеханики (ИАТ) АН СССР [28], изображена на фиг. 17. Поток жидкости вращает крыльчатую вертушку, в одной из лопастей которой запрессовано небольшое количество радиоактивного вещества 1. Поток гамма-излучения пронизывает стенку трубопровода и попадает на приемник излучения 2, соединенный с измерительным устройством 3. На пути потока излучения располагается защитный экран 4 таким образом, что излучение попадает в приемник только в течение небольшого промежутка времени за каждый оборот вертушки. Поэтому число импульсов излучения, поступающих на приемник, равно числу оборотов вертушки. На выходе измерительного устройства включен стрелочный прибор 5, показывающий значение мгновенного расхода жидкости, и электромеханический счетчик импульсов 6, который учитывает суммарный расход. Толщина защитного экрана I выбирается по формуле  [c.328]

Излучатель черный 221, 681 Излучающая поверхность тела 197, 189—193 Излучающий слой, эффективная толщина 196, 197 Измерение температуры жидкостей и газов 255-258 Изображение Фурье 746, 748 Изотерма сорбции 602, 604—606 Импульс газового потока статический 27—49  [c.891]

За прошедший период исследования многих новых проблем механики жидкости и газа получили применение при решении задач современной техники. Среди этих проблем заслуживают упоминания динамические и термодинамические процессы в газовых потоках больших скоростей, движение электропроводных жидкостей и газов (плазмы) в электрических и магнитных полях, ламинарный и турбулентный перенос импульса (трение), тепла и вещества (примесей) в потоках ньютоновских и неньютоновских жидкостей и много других физических и химических явлений, сопутствующих движениям реальных жидкостей и газов.  [c.8]

Линейные гидродинамические уравнения. Рассмотрим теперь другой важный класс линейных уравнений переноса, а именно, — линейные гидродинамические процессы. Исторически гидродинамика развивалась как наука о макроскопических движениях в газах и жидкостях. Феноменологическая гидродинамика основана на локальных законах сохранения массы, энергии и импульса, а также на равновесных термодинамических соотношениях, которые применяются к малым, но макроскопическим объемам среды ). В настоящее время термин гидродинамика используется в более широком смысле, так как многие процессы в самых различных системах описываются уравнениями, структура которых аналогична уравнениям гидродинамического переноса в жидкостях и газах.  [c.390]

Для установления связи между функциями и, V, ш, р, р, Т, р, Ср, X механика жидкости и газа дает четыре уравнения, из которых три выражают закон сохранения импульса и одно — уравнение неразрывности — выражает закон сохранения массы вещества. Из термодинамики используются недостающие пять уравнений уравнение состояния, связывающее давление, плотность и температуру жидкости уравнение, устанавливающее зависимость вязкости от температуры уравнение энергии, выражающее закон сохранения энергии, и уравнения, устанавливающие зависимость теплоемкости и теплопроводности от температуры.  [c.8]

Явление кавитации весьма распространено при движении жидкостей и состоит в образовании в жидкости разрывов или полостей, заполненных паром жидкости и газом (растворенным в ней), которые, захлопываясь, создают большие местные ударные давления, достигающие значений в тысячи атмосфер. Так, кавитация возникает, например, при вращении корабельных винтов, лопаток гидротурбин, при протекании быстрых потоков жидкости через сужение в трубах, и т. д. Кавитация имеет важное значение в технике, играя в одних случаях вредную и в других — полезную роль. Ударные импульсы давления при захлопывании кавитационных пузырьков в силу больших значений давления приводят к эрозии металла — при неправильно рассчитанных корабельных винтах и лопатках турбин, когда явление кавитации сильно выражено, поверхность металла разрушается и изделие выходит из строя. О полезной роли кавитации мы скажем ниже.  [c.399]


Как видно, здесь мы имеем существенное отличие характера поглощения упругих волн по сравнению с жидкостями и газами, где поглощение пропорционально квадрату частоты. Такой характер поглощения в твердых телах принято объяснять тем, что при прохождении упругой волны в твердом теле, упругость которого несовершенна, возникают потери на гистерезис. На рис. 277 схематически была представлена кривая, представляющая зависимость напряжения от деформации из этой кривой видно, что деформация точно не повторяется в течение цикла образуется петля, так называемая петля гистерезиса. Площадь этой петли характеризует ту механическую энергию, которая теряется в форме тепла ). На приведенном рисунке показан случай преувеличенной величины гистерезисной петли. В действительности, если бы для таких хорошо проводящих звук тел, как плавленый кварц, стекло и пр., мы какими-либо статическими методами, т. е. прикладывая какую-либо нагрузку к образцу и снимая ее, измеряя при этом величины деформации, попытались бы найти различие в поведении кривой деформации в зависимости от напряжения, то никакой гистерезисной петли мы не обнаружили бы. Этот эффект при малых деформациях, которые обычно имеют место при распространении упругих волн, чрезвычайно мал. Однако для упругих волн достаточно высокой частоты, при прохождении импульса давления, каждый слой материала поочередно совершает описанный выше цикл, число которых на ультразвуковых частотах составляет миллионы в секунду. Поэтому хотя сама гистерезисная петля может иметь ничтожную площадь, при большом числе циклов в секунду эффект накапливается и становится существенным. Из приведенных соображений ясно, что при гистерезисе потери должны быть пропорциональны числу циклов в секунду, т. е. поглощение упругих волн при этом должно быть пропорционально частоте, что стоит в согласии с приведенными выше экспериментальными данными.  [c.478]

Физический смысл явления сводится к тому, что практически несжимаемая жидкость с огромной скоростью раздвигается во все стороны от линии разряда, образуя полость, по аналогии с известной названную нами полостью кавитации, и первый, основной, гидравлический удар. Затем полость с такой же скоростью смыкается, создавая второй, кавитационный, гидравлический удар. На этом цикл явления заканчивается, повторяясь с частотой чередования импульсов. Жидкость и тела, помещенные вблизи зоны разряда, практически не нагреваются газо- и парообразование, а также эрозия электродов практически отсутствуют.  [c.249]

Ультразвук может быть применен для измерения скорости потоков жидкостей и газов. Для этого по направлению потока, на некотором расстоянии друг от друга, располагают два ультразвуковых вибратора (рис. 35). Пошлем, например, первым вибратором короткий ультразвуковой импульс и, приняв его вторым вибратором, определим время 1, необходимое этому импульсу для прохождения расстояния О между вибраторами. Так как звук распространяется по направлению потока, то скорость его складывается из скорости звука с в данной среде и скорости потока V. Отсюда ясно, что измеренное время связано  [c.63]

Приборы для контроля состава и свойств вещества ультразвуковыми методами можно подразделить на следующие основные группы приборы, производящие экспресс-анализ физико-химических процессов ультразвуковые уровнемеры и сигнализаторы уровня приборы, измеряющие скорости потоков, температуру, расход жидкостей и газов. В свою очередь, все ультразвуковые кои-рольно-измерительные приборы разделяются на работающие в импульсном режиме и в режиме непрерывного излучения. При импульсном режиме в исследуемую скид-кость посылаются короткие ультразвуковые сигналы-импульсы и измеряется время пробега их вдоль отрезка определенной длины.  [c.111]

Скорость распространения ультразвуковых волн в жидкости связана, таким образом, с ее постоянными р, В и и может дать представление о ее химических и физических свойствах. Имеется два основных метода измерения скорости. Для жидкостей и газов обычно применяется метод интерферометра [6]. В последнее время начали применять импульсные методы, при которых измеряется время прохождения импульса [7].  [c.22]

Перейдем к определению добавочной скорости у (3. 1.3), обусловленной взаимодействием двух газовых пузырьков. С этой целью рассмотрим импульс жидкости, обтекающей пузырек газа А, связанный с относительным движением пузырька газа А и жидкости  [c.92]

В данном разделе рассматривается задача об относительном движении сферических газовых пузырьков в идеальной жидкости в случае их малой концентрации. В результате ее решения определяются средняя скорость установившегося движения совокупности пузырьков, эффективная масса пузырька газа в смеси и поток импульса, связанный с относительным движением между жидкостью и пузырьками.  [c.96]

Перейдем к определению потока импульса рассматриваемой газожидкостной смеси. Будем считать а, V, и р заданными величинами. Скорость объемного течения у д, определяется соотношением (3. 2. 20). Поскольку а мало, можно пренебречь вкладом потока импульса газа в полный поток импульса, т. е. будем определять поток импульса жидкости. С этой целью введем функцию Р го, Су)  [c.100]

Таким образом, в данном разделе исследовано влияние гидродинамического взаимодействия газовых пузырьков на среднюю скорость, эффективную массу пузырьков газа и полный поток импульса жидкости. Полученные результаты теоретического анализа объясняют закономерности поведения совокупности газовых пузырьков в экспериментальных исследованиях.  [c.103]


В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]

Средства контроля шероховатости поверхностей. При падении волны из жидкости или газа (первой среды) на шероховатую поверхность твердого тела появляются рассеянные волны. Переход импульсов УЗ К через шероховатую границу раздела сопровождается трансформацией их спектров в зависимости от соотношения размера неровностей и длин волн в первой среде соответствующих частотных составляющих. Одновременное распространение волн в первой среде между неровностями и в материале неровностей вызывает интерференцию.  [c.286]

Кроме того, при переходе к последнему равенству имеется в виду, что поверхность контакта Ft и среднее сечение f каналов течения газа, если они не заданы геометрически в аппарате, определяются линейными размерами системы газ — жидкость, расходами, скоростями и физическими параметрами сред, т. е. теми переменными, которые входят в полученные числа подобия. Ввиду близости значения Рг к единице для газов в последующем можно его исключить из определяющих чисел подобия, тем более что из рассмотренной выше системы дифференциальных уравнений переноса импульса, массы и энергии следует, что число Нуссельта зависит от чисел Рейнольдса и Фруда Nu = f(Re, Fr).  [c.59]

Благодаря высокой интенсивности излучения импульсных лазеров запись голограмм производится па спец. материалах, т. к. многие материалы, предназначенные для непрерывной записи голограмм, мало чувствительны к коротким импульсам излучения. В И. г. используются тонкие ыагк. плёнки, к-рые могут быть локально нагреты лазерным излучением до точки Кюри (MnBi, EuG и др.), что приводит к изменению магн. п магпитооптич. свойств [1] полупроводниковые кристаллы, поглощающие жидкости и газы, комбинационно-активные среды (см. Комбинационное рассеяние света), среды с инверсией заселённостей и фазовой памятью [4].  [c.132]

Решение уравнений (5.24), (5.25) позволяет определить интегральные характеристл-ки толщину вытеснения б, толщину потери импульса б и толщину потери энергии, коэффициенты трения f и теплообмена St. Для решения уравнений (5.24), (5.25) вводятся дополнительные связи между 6 и j, б и St и зависимость для форм-параметра Н от градиента давления во внешнем потоке и температуры поверхности. Эти дополнительные связи и зависимости находятся из анализа существующих решений задач рассматриваемого класса. Решение задач вязкого течения газа (жидкости) интегральными методами было впервые получено Т. Карманом и К. Поль-гаузеном [106], Л. Г. Лойцяиским [39], А. А. Дородницыным [24]. Применимость метода интегральных соотношений для широкого класса задач вязких течений жидкостей и газов, включая трехмерные задачи, показана в работе И. П. Гинзбурга [17].  [c.184]

Адиабатный импульсно-стационарный метод, применяемый для определения истинной теплоемкости до 700°С, основан на введении заданного теплового импульса Q в калориметр с исследуемым материалом и измерении повышения его температуры M—h — ti. Этот метод принципиально аналогичен методу непосредственного нагрева для исследования жидкостей и газов (см. 5-2). Потери тепла с поверхности образца в среду устраняются автоматически действующей адиабатной оболочкой. Заданный температурный уровень опыта обеспечивается внешним нагревателем. Перед началом каждого опыта в калориметрической системе устанавливается стационарное тепловое состояние с равномерным температурным полем. Для улучшения условий адиабатизации опыты обычно проводят в вакууммированной среде [33, 121].  [c.313]

При просвечивании трубы узким пучком гамма-дзлучения вдоль хорды будем иметь среднее по ее длине газосодержание ф, которое сравнительно точно определяется по (191). Как и ранее, вычисляется по 1, п, 2 — количеству зарегистрированных импульсов в единицу времени при просвечивании смеси жидкости и газа (пара),  [c.98]

Рис. 21, Применение законов сохранения импульса и момента умпульса в механике жидкости и газа Рис. 21, Применение <a href="/info/12322">законов сохранения импульса</a> и момента умпульса в <a href="/info/20641">механике жидкости</a> и газа
При рассмотрении турбулентных потоков в реальных жидкостях и газах, наряду с переносом количества движения (импульса), часто приходится иметь одновременно дело с переносом тепла и вещества. Практически интересные задачи тепломассопереноса в турбулентных потоках обычно допускают простую стратификацию по температуре и концентрации, совпадающую со стратификацией по скорости. Пользуясь идеей Буссинека о придании формуле турбулентного трения того же вида, что и ламинарный закон Ньютона, можно и турбулентным потокам тепла и вещества придать вид, формально обобщающий известные уже нам по предыдущим главам законы Фурье и Фика.  [c.556]

И. А. Чарным наряду с общим исследованием течения в трубах реальных сред проведен анализ двух конкретных случаев движения жидкости и газа, для которых сделаны выводы, распространяемые и на другие формы движения одним из них является гидравлический удар, вызываемый внезапным перекрытием канала, в котором до этого скорость потока была равна Уо другим — распространение импульса давления по каналу, конец которого заглущен. Эти случаи движения отличаются от рассматриваемых здесь. Однако сделанные в работе [25] при их исследовании выводы, касающиеся влияния длины канала на характеристики изменения давления в нем, могут быть использованы и при анализе других процессов, при которых резко изменяется расход в каналах.  [c.403]

Закономерности броуновского движения. Большое значение в обосновании молекулярно-кинетической теории имело открытие английского ботаника Роберта Б р о у н а (1773—1858). В 1827 г. он обнаружил беспорядочное движение видимых в микроскоп твердых частиц, находящихся в жидкости. Это явление, названное броуновским движением, смогла объяснить лишь молекулярнокинетическая теория на основе использования представлений о существовании молекул. Беспорядочно движущиеся молекулы жидкости или газа сталкиваются с твердой частицей и изменяют направление и модуль скорости ее движения. Число молекул, ударяющих частицу с различных сторон, и направление передаваемого ими импульса непостоянны. Чем меньше размеры и масса частицы, тем более заметными становятся изменения ее импульса во времени.  [c.72]


Развитие термодинамики необратимых процессов сделало возможным изучение сложных явлений, состоящих из шюкольких одновременно происходящих процессов разной природы, и привело к созданию единого способа феноменологического описания их. Это в свою очередь сделало правомерным, а возможно и обязательным, совместное рассмотрение явлений, которые изучались ранее независимо одно от другого. Исходя из этого в книге эффекты диссипации энергии при движении жидкости или газа, т. е. перенос импульса и теплоты, рассматриваются как составные части термодинамики. Едва ли кто-нибудь в настоящее время будет оспаривать, что теплопередача является одним из разделов динамики теплоты, т. е. термодинамики.  [c.5]


Смотреть страницы где упоминается термин Импульс жидкости и газов : [c.578]    [c.277]    [c.391]    [c.4]    [c.422]    [c.350]    [c.781]    [c.330]    [c.227]    [c.161]    [c.539]    [c.186]   
Смотреть главы в:

Курс общей физики Механика  -> Импульс жидкости и газов



ПОИСК



Импульс жидкости



© 2025 Mash-xxl.info Реклама на сайте