Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работоспособность и разрушение тел с трещинами

Обратными разрушению гладких образцов, обусловленному зарождением усталостной трещины, являются разрущения образцов, имеющих острые концентраторы напряжений. Ими могут быть дефекты в сварочных швах или дефекты, связанные с особенностями конструкции (например, в самолете Комета-1 , где концентрация напряжения у острых углов окон в фюзеляже оказалась достаточной для зарождения и роста трещин в нормальных условиях эксплуатации циклы повышения и понижения давления, порывы ветра, вибрации, грубые посадки и т. д.). Можно предположить, что при циклическом нагружении у основания концентратора напряжения происходят последовательно те же самые события (т. е. развитие дислокационной субструктуры, локализация скольжения, образование трещин в полосах скольжения), что и на поверхности гладкого образца. Однако, если коэффициент концентрации напряжений велик, то развитие этих событий будет происходить при небольшом внешнем напряжении, поэтому стадия II роста трещины не обязательно быстро приведет к окончательному разрушению. Трещина будет распространяться с ускорением, но скорость ее продвижения будет настолько малой, что работоспособность детали будет гарантирована в течение долгого времени, несмотря на растущую в ней трещину. Такой подход к оценке работоспособности требует знания как окончательной вязкости материала, так и связи скорости роста трещины с напряжениями, возникающими в процессе службы детали.  [c.225]


Прочность — главный критерий работоспособности для большинства деталей. Прочность — способность детали сопротивляться разрушению или возникновению пластичных деформаций под действием приложенных к ней нагрузок. Различают разрушение деталей вследствие потери статической прочности или потери сопротивления усталости. Потеря статической прочности происходит тогда, когда значение рабочих напряжений превышает предел текучести для пластичных материалов или предел прочности хрупких материалов. Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Потеря сопротивления усталости происходит в результате длительного действия переменных напряжений, превышающих предел выносливости материала, например a i.  [c.30]

Усталостное разрушение материала не обязательно должно привести к поломкам детали. Возможно возникновение усталостных трещин, которые до определенных размеров незначительно снижают работоспособность изделия, и опасность представляет в основном возможность их быстрого роста, приводящая к снижению несущей способности изделия.  [c.83]

Поломка зубьев — наиболее опасный вид разрушения (рис. 16.1, а). Она происходит вследствие возникающих в зубьях повторно-переменных напряжений при деформации изгиба. Поломка зубьев происходит также в результате больших перегрузок ударного и даже статического действия, а также усталостного разрушения от действия переменных напряжений в течение длительного срока службы. Трещины усталости возникают у основания зуба из-за неучтенных расчетом перегрузок. Перенапряжение зубьев может вызывать концентрацию нагрузки по длине зуба вследствие неправильного монтажа (чаще всего непараллельности валов), а также из-за грубой обработки поверхности впадин зубьев, заклинивания зубьев при нагреве передачи и недостаточной величины боковых зазоров. Практика показывает, что чаще всего наблюдаются отколы углов зубьев, связанные с концентрацией нагрузки. Важные меры повышения работоспособности — увеличение модуля, повышение твердости, поверхностное упрочнение, уменьшение нагрузок по краям зуба, применение жестких валов, бочкообразные зубья и др.  [c.296]

Соответствие механических характеристик материала требованиям чертежа указывало на то, что развитие трещин малоцикловой усталости обусловлено исчерпанием работоспособности дисков в условиях высокого уровня напряженности. В связи с этим возникла проблема использования долговечности дисков при гарантированном отсутствии возможности их разрушения в результате развития трещин малоцикловой усталости, т. е. проблема эксплуатации двигателей с безопасным повреждением дисков. Эта проблема была успешно решена в результате проведения комплекса исследований, включавшего в себя количественную фрактографическую оценку длительности роста усталостных трешин.  [c.543]


Применение акустико-эмиссионного метода. В последнее время для обнаружения и оценки параметров трещин все шире применяется явление акустической эмиссии (АЭ) — излучение развивающейся трещиной акустических волн [59]. АЭ сопровождает процесс деформирования материала от стадии переориентации комплексов микродефектов до полного разрушения контролируемой детали. С помощью АЭ можно диагностировать и прогнозировать состояние контролируемого объекта на стадии, когда последний остается еще работоспособным.  [c.444]

Наблюдались разрушения секций камер сгорания и, как следствие, от выносимых частиц появлялись трещины и вмятины на кромках рабочих лопаток первой ступени ТВД. Для обеспечения работоспособности секции камер сгорания модернизированы. Обрыв лопаток ОК с первой по четвертую ступень объясняется неработоспособностью силуминовых вставок, служащих для ограничения проточной части над лопатками ротора. При задевании лопаток о вставки возникает тормозящий момент, а затем лопатки обламываются. Для исключения этих поломок завод-изготовитель заменил материал силуминовых вставок на СтЗ и по рекомендации эксплуатационников выполнил модернизацию лопаток. В дальнейшей эксплуатации такие поломки не повторялись. В схему защит агрегата дополнительно введена защита от падения давления масла предельного регулирования. Это дало возможность вместе с закрытием топливных клапанов получить сигнал на аварийную остановку с закрытием кра-  [c.95]

Наличие скачков на R-кривых и на диаграммах нагрузка — смещение у никелевых сталей является предметом для обсуждения. Эти скачки представляют собой быстрый рост трещины с последующей его остановкой. Остановки могут быть связаны с характеристиками вязкости материала, но могут быть также результатом падения приложенной нагрузки из-за жесткости испытательной машины. Результаты определения вязкости разрушения, полученные в настоящей работе, дают более полную характеристику свойств материала и призваны помочь при выборе материала в каждом конкретном случае его применения. Проведенные испытания показывают, что работоспособность сварной конструкции, изготовленной из сталей, легированных никелем, зависит от свойств зоны термического влияния. Это необходимо учитывать наряду с расчетными, технологическими и экономическими факторами при окончательном выборе материала.  [c.219]

При достаточно высокой температуре конструкция разрушается при весьма высоких разрушающих напряжениях и остаточные напряжения не оказывают влияния на величину последних. Когда температура работы конструкции ниже критической температуры торможения процесса распространения хрупкой трещины (для основного металла конструкции), хрупкое разрушение может возникнуть при довольно низких напряжениях, однако при этом трещина остановится после распространения на некоторую длину. Полное разрушение конструкций происходит при высоком разрушающем напряжении. В этом случае остаточные напряжения оказывают влияние на работоспособность конструкции. При температуре испытания ниже температуры торможения трещины хрупкое разрушение будет происходить так а) если напряжение от внешней нагрузки, при котором возникла трещина, ниже критического напряжения, обусловливающего хрупкое разрушение при данной температуре, распространение трещины приостановится, а полное разрушение произойдет при высоких разрушающих напряжениях. В этом случае остаточные напряжения не влияют на величину разрушающей нагрузки б) если напряжение возникновения трещины выше критического напряжения, трещина распространится на все сечение образца, конструкция будет полностью разрушена при небольших значениях разрушающего напряжения. В этом случае остаточные напряжения оказывают существенное влияние на несущую спо собность конструкции.  [c.221]

Наличие указанных дефектов создает условия для нарушения силового потока и для возникновения концентрации напряжений, что приводит к опасности появления преждевременных хрупких разрушений. При этом имеющиеся в конструкции остаточные напряжения, ввиду хрупкого состояния материала в зоне трещины, могут складываться с рабочими и снижать работоспособность изделия. Как показывает эксплуатационный опыт, большинство разрушений сварных конструкций связано с развитием имеющихся дефектов и, прежде всего, трещин, непроваров и пр. Наиболее резко дефекты  [c.94]


Многочисленные исследования, а также накопленный к настоящему времени опыт промышленности показывают, что поверхностный наклеп и химико-термическая обработка являются мощным средством повышения работоспособности деталей машин и сооружений. Однако поверхностный наклеп благоприятен лишь в тех случаях, когда работоспособность детали определяется ее сопротивлением усталостным разрушениям, т. е. сопротивлением образованию и постепенному развитию трещин под влиянием длительного действия циклически меняющихся напряжений.  [c.246]

Поскольку усталостное разрушение является одной из разновидностей хрупкого разрушения, целесообразно проводить совместное изучение усталостных характеристик и вязкости разрушения сплавов в условиях циклического нагружения [1, 2]. В ВИЛС совместно с ИМЕТ такие исследования проводятся с целью разработки эффективных методов оценки работоспособности материалов с определением критической энергии на единицу длины трещины или критической интенсивности напряжения у вершины трещины в условиях плоской деформации при циклическом нагружении (соответственно определяемые параметры — /(, ).  [c.81]

Таким образом, работоспособность материала с трещиной как высокопрочного, так и пластического можно оценивать одновременно по усталостным свойствам и по вязкости разрушения, определенной при циклическом или каком-либо другом способе нагружения.  [c.90]

Наиболее эффективным для такой оценки работоспособности материала с трещиной является, по мнению авторов, экспресс-метод определения предела усталости по значению вязкости разрушения (или вязкости разрушения по известному значению предела усталости).  [c.90]

Следовательно, критерий разрушения не учитывает влияние пластической деформации в энергетике процесса, а также второго слагаемого в выражении для вычисления работы деформации А = оДу + Доу. Очевидно, в связи с этим критерий Гриффитса дает завышенные значения разрушающих напряжений. Расчет напряжений, необходимых для появления в металле начальной трещины размером в несколько межатомных расстояний, дает очень большие значения, близкие к теоретической прочности (см. табл. 2.1). Именно поэтому при анализе работоспособности критериев разрушения и были высказаны предположения о том, что трещины в металле присутствуют всегда, а экспериментальные исследования были направлены на обнаружение этих трещин.  [c.74]

Для оценки работоспособности различных материалов в условиях, приближающихся к эксплуатационным, в последние годы стали широко привлекать механику разрушения. В этой книге рассмотрены методы оценки работоспособности материалов с точки зрения сопротивления их разрушению. Большое внимание уделено теоретическим аспектам разрушения, анализу поля напряжений у надрезов и трещин, а также применению механики разрушения к проблеме распространения трещин в условиях усталости и коррозии под напряжением. Приведены тщательно систематизированные данные о разрушении материалов в условиях линейно-упругой и упруго-пластической деформации. Описаны механизмы перехода от хрупкого разрушения к вязкому.  [c.4]

А) Способность противостоять усталости. В) Способность работать в поврежденном состоянии после образования трещины. С) Способность сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного времени. D) Способность противостоять хрупкому разрушению.  [c.55]

А) Напряжение, вызывающее разрушение при определенной температуре за данный отрезок времени. В) Свойство материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность детали в течение заданного времени. С) Долговечность детали от момента зарождения первой макроскопической трещины усталости до разрушения. D) Напряжение, вызывающее заданную скорость деформации при данной температуре.  [c.56]

А6.4. РАБОТОСПОСОБНОСТЬ И РАЗРУШЕНИЕ ТЕЛ С ТРЕЩИНАМИ  [c.237]

Разделение материала объекта на части с полной потерей его прочности и работоспособности Разрушение материала нагружаемого объекта до полной потери его прочности или работоспособности вследствие распространения усталосчной трещины Поверхность раздела, возникающая при усталостном разрушении объекта Часть усталостного излома, возникающая в завершающей стадии разрушения из-за недостатка прочности сечения по трещине Усталость материала, при которой усталостное повреждение или разрушение происходит при упругопластическом деформировании  [c.33]

Экспериментально установлено, что при качении со скольжением, например сО Г,>г),г,. сл . рис. 8.8, а), цилиндры / и 2 обладают различным сопры 1 Г лс1 ем устэлости. Это объяснястся следующим. Усталостные микротрещины при скольжении располагаются не радиально, а вытягиваются в иаправлении сил трения. При этом в зоне контакта масло выдавливается из трещин опережающего цилиндра 1 и запрессовывается в треш.ипы отстающего цилиндра 2. Поэтому отстающий цилиндр обладает меньшим сопротивлением усталости. Ускорение развития трещин при работе в масле не означает, что без масла разрушение рабочих поверхностей замедлено. Во-первых, масло образует на поверхности защитные пленки, которые частично или полностью устраняют непосредственный металлический контакт и уменьшают трение. При контакте через масляную пленку контактные напряжения уменьшаются, срок службы до зарождения трещин увеличивается. Во-вторых, при работе без масла увеличивается 1 итенсивность абразивного износа, который становится главным критерием работоспособности и существенно сокращает срок слу кбы.  [c.104]


Аналитические решения такого рода уравнений получены для задач в идеализированной постановке (плоскость с полу-бесконечной или конечной трещиной, пространство с дисковидной трещиной и т. д.) при воздействии гармонических и ударных нагрузок (достаточно полный их обзор дан в работах [148, 177, 178, 199, 220, 271]. Однако эти решения дают представления о реальном поведении конструкции конечных размеров только в начальный период времени (до прихода в вершину трещины волн напряжений, отраженных от границ тела). Кроме того, они не учитывают разнородности материала конструкции по механическим свойствам, изменения граничных условий по-берегам трещины в процессе ее продвижения траектория трещины считается прямолинейной, а удельная эффективная энергия, затрачиваемая на образование новых поверхностей yf, принимается постоянной и не зависящей от скорости деформирования. Очевидно, что с помощью методов, имеющих указанные ограничения, навряд ли можно дать надежные оценки работоспособности элементов конструкций сложной формы и характера нагружения. Поэтому широкое распространение получили численные методы расчета динамических параметров механики разрушения [177, 178].  [c.241]

При изготовлении тонкостенных оболочковых конструкций для химического аппаратостроения в целях защиты их поверхности от воздействия агрессивной среды и сохранения прочности и пластичности металла при низкой температуре используют самые разнообразные материалы (биметаллы, цветные металлы и сплавы, среднелегированные стали и др ) В связи с этим технология сварки таких конструкции достаточно сложна, нередко требует сочетания различных способов, специальных присадков, дополнительных мероприятий по предотвращению трещинообразования, защите сварочной ванны от окисления и т.д Для операций сборки и сварки цилиндрической части сосудов обычно применяют роликовые стенды, оборуд>я их paзличны и приспособлениями флюсовыми подушками, стяжными скобами, автоматическими головками для сварки, распорками, центраторами и др Сварку обечайки с днищем производят стыковыми швами за один или несколько проходов В стенки сосудов и аппаратов приходится вваривать патрубки, лючки, штуцера и другие элементы, сварные соединения которых часто являются инициаторами разрушения конструкции На рис 19 приведены в качестве примера некоторые варианты конструктивного оформления шт церов в аппаратах химического производства. Варианты с дополнительно усиливающими кольцами (см. рис 1 9,й) и утолщенными патрубками (см рис 19,6) выполняются угловыми швами, в зонах которых возникает значительная концентрация напряжений В данном месте часто появляются усталостные трещины Более предпочтительными с точки зрения повышения работоспособности являются варианты соединений с вытяжкой горловины (см рис.  [c.18]

Для определения работоспособности титановых сплавов при многоцикловом нагружении необходимо знать их усталостную прочность. При этом следует иметь в виду, что в литературе по усталостным свойствм титановых сплавов имеется много противоречивых сведений. Это, по-видимому, является результатом не только недостаточной изученности этих свойств, но и их своеобразием. Так, уже сейчас ясно, что точные данные по усталостному поведению титановых сплавов во многих случаях можно выяснить лишь на основании статистической обработки первичных данных, так как при усталостных испытаниях наблюдается повышенный разброс данных. Очень важен статистический подход при определении надежной работы крупных деталей машин при многоцикловом нагружении. Уникальное явление усталости титана —его чувствительность к состоянию поверхности. В частности, в последнее время выяснили, что при числе циклов до 10 трещины зарождаются в самом поверхностном слое, состояние которого полностью определяет уровень предела выносливости. При числе нагружений более 10 разрушение носит подповерхностный (подкорковый) характер, хотя типичное усталостное разрушение наблюдается при числе циклов нагружения по крайней мере до 10 ° [91]. Пренебрежение к финишным поверхностным обработкам титановых деталей, работающих на усталость, явилось причиной снижения их долговечности на начальном этапе внедрения титана в технике.  [c.137]

Многолетний опыт эксплуатации авиационных ГТД показывает, что усталостные повреждения титановых дисков вплоть до разрушения различных ступеней компрессоров разных типов двигателей происходят в различных зонах дисков и при разной их наработке (табл. 9.1). Причины появления и распространения усталостных трещин в дисках различны и могут быть связаны с исчерпанием их циклической долговечности по критериям МНЦУ, МЦУ или МНЦУ/МЦУ в расчетных или нерасчетных условиях работы дисков и наличием или отсутствием факторов, снижающих усталостную прочность дисков и имеющих производственную или эксплуатационную природу. Последствия от разрушения дисков таковы, что двигатель утрачивает полностью свою работоспособность (рис. 9.1). Поэтому при отказе двигателя в полете из-за разрушения диска возникает предпосылка к летному происшествию, в том числе и из-за титанового пожара двигателя.  [c.464]

А. Я. Рублевым разработаны ультразвуковая и индукционная установки для определения продолжительности жизни образцов с трещинами. Основой индукционной установки является дефектоскоп ДНМ-500 с датчиком, вставляющимся в отверстие концентратора. Обе установки обеспечивали выявление трещины усталости практически одновременно. Площадь трещин составляла 0,195—0,4 мм , а протяженность 0,3—0,4 мм. Вероятность сохранения работоспособности образцов с трещиной колебалась от 14 до 42%. Этими исследованиями было установлено, что поверхностный наклеп шариками образцов из высокопрочных сплавов В93, В95 увеличивает их долговечность. Так, после проведения наклепа число циклов до образования трещин возрастает с 16,4-Ю до 40,9-10 , в то время как число циклов до разрушения образца с трещиной увеличивается с 5,3-Ю до 7,5-10 циклов. У наклепанных образцов меньшая скорость роста трещины в начальный период, причем довольно длительный период по числу циклов (3,5 10 циклов) она почти постоянна, в то время как у ненаклепанных образцов трещина усталости после возникновения начинает расти со все возрастающей скоростью. Наклеп перед анодированием резко увеличивает долговечность образцов за счет удлинения периода до образования трещин таким образом, что общая долговечность наклепанных и анодированных образцов возрастает в 6,5 раза по сравнению с ненаклепанными (с 5,9 10 до 38,7- 10 циклов) и превосходит долговечность исходных фрезерованных (наклепанных и неанодированных) образцов.  [c.164]

Наиболее опасными для работоспособности деталей с усталостными трещинами являются перегрузки, носящие динамический характер, так как в этом случае резко возрастает возможность возникновения хрупкого разрушения детали. Однако характерной особенностью работы деталей с нераспространяю-щимися усталостными трещинами является малая чувствитель- ность их к такого рода перегрузкам. Как показывают результаты опытов, нестационарность режима нагружения (наличие перегрузок) не является более опасным для детали с нераспро-страняющейся трещиной, чем для детали, не имеющей трещин  [c.95]

Влияние интерметаллидов, взаимодействующих с А1 по эвтектическому типу, показано на примере реальных сплавов системы А1—Си—Mg с добавками Ее и № (рис. 3). Однако частицы фаз Al9FeNi эффективно препятствуют процессам развития трещии, резко увеличивая время до разрушения сплава. При малых степенях пластической деформации структурным фактором, могущим вызвать преждевременное зарождение трещин, являются интерметаллические фазы, образованные переходными металлами с алюминием, в то время как фазы, взаимодействующие по эвтектическому типу, тормозят распространение трещин и повышают работоспособность реальных изделий в условиях растягивающих напряжений. При этом было подсчитано если частицы имеют размеры менее 20—30 мкм в литых и 10—20 мкм в деформированных сплавах, то они практически не разрушаются при растяжении. Измельчение указанных частиц технологическими способами позволило резко повысить работоспособность реа.пьных сложнолегироваиных сплавов.  [c.125]


Работоспособность материала с трещиной при циклическол нагружении в настоящее время предлагается определять по спектру пороговых значений коэффициента интенсивности напряжений [8], одно из которых соответствует моменту окончательного долома образца К с- В этом случае значения К с для всех способов обработки, кроме индукционной закалки, колебались от 26 до 30 МПа(/м, что недостаточно для определенного суждения о влиянии скорости охлаждения на циклическую трещиностойкость. После индукционной закалки значение коэффициента К с увеличилось до 36,3 МПа)/м, что указывает на более высокое сопротивление усталостному разрушению металла в этом состоянии.  [c.178]

В современных конструкциях сосудов высокого давления, энергетических установках и аппаратах широко применяются резьбовые соединения больших диаметров, работающие в условиях переменного теплового и механического воздействия. Такие условия внешнего нагружения приводят к упругопластическому циклическому деформированию с возможным выходом из строя при малом числе циклов нагружения. Из-за ограничений по компоновке увеличить размеры этих соединений не представляется возмонсным. Для изготовления элементов крепежа в энергетике и других отраслях техники применяются теплоустойчивые стали, обладающие высокими характеристиками сопротивления однократному нагружению и пониженными свойствами пластичности. Дальнейшее повышение механических свойств применяемых металлов не приводит к увеличению сопротивления циклическому разрушению резьбовых соединений из-за смены механизма разрушения усталостного на хрупкий). Повышения работоспособности резьбовых соединений можно достигнуть лишь совершенствованием конструкций и применением материалов, обладающих повышенной сопротивляемостью циклическому нагружению при наличии трещин  [c.387]

Детали машин, как правило, имеют конструктивные концентраторы напряжений. Концентрация растягивающих напряжений приводит к сильному понижению сопротивления деталей усталостному разрушению. В этих случаях сопутствующие наклепу остаточные сжимающие напряжения особенно благоприятны Они значительно снижают, а во многих случаях лолностью ликвидируют отрицательное влияние концентраторов напряжений. Проявление поверхностного наклепа особенно полезно в тех случаях, когда работоспособность детали определяется ее сопротивлением усталостным разрушениям, т. е. сопротивлением образованию и развитию трещин под влиянием циклически меняющихся напряжений [60].  [c.283]

Наличие реактивных напряжений одгюго знака, не урановешенных в пределах сечения и распределенных по большой площади, обусловливает накапливание в изделии больших запасов скрытой потенциальной энергии и может снизить работоспособность конструкции. Можно предполагать, что скрытая энергия способствует прежде всего процессу разрушения. Поэтому, например, при наличии в изделии различных зародышевых дефектов в виде надрывов, трещин и других накопленная скрытая энергия реактивных напряжений может приводить к их раскрытию вплоть до полного разделения деталей. Самопроизвольные разрушения, происходящие при полном отсутствии приложенных нагрузок и имеющие характер взрыва, свидетельствуют об огромных запасах энергии, которая может накопиться в конструкциях или деталях конструкции. Разрушения от действия реактивных напряжений могут происходить в процессе как изготовления, так и эксплуатации конструкции.  [c.62]

Замена широких облицовочных листов из стали 1Х18Н9Т на полосы шириной 50 мм и толщиной 3 мм на лопастях и камерах рабочих колес позволила повысить ее работоспособность (табл. 6). В этом случае вспучивание и отрыв полос на лопастях гидротурбин Каховской ГЭС наблюдались через 10—15 тыс. ч, на полосах наряду с появлением усталостных трещин имеют место эрозионные разрушения металла, в основном в местах резких переходов, незашлифованных швов и т. п. Аналогичное положение имеется и при облицовке камер рабочих колес, изготовленных из Ст. 3. На Горьковской и ряде других ГЭС, работающих при низкой интенсивности кавитационных воздействий, эрозионных разрушений металла облицовочных полос не было обнаружено, однако наблюдалось отслаивание облицовки от тела камеры  [c.43]

На указанной установке проводились испытания сварных стыков труб 0 219 X 27 мм из стали Х18Н12Т, сваренных электродами типов ЭА-1Ба (марки ЦТ-15) и композиции Х16Н9М2 (марки ЦТ-26). Стыки были в исходном состоянии после сварки и после аустенитизации. По результатам этих испытаний установлено, что в условиях испытания образца трубы при 560° С и внутреннем давлении 170 ama воздействие постоянного изгибающего момента приводит к значительному изгибу трубы без повреждений сварных стыков. В связи с этим была принята другая схема нагружения при воздействии знакопеременного изгибающего момента с длительностью цикла 2 ч. При этих испытаниях выявилась меньшая работоспособность (в 2—3 раза) сварных соединений исходного состояния по сравнению с аустенитизированными. Если в первом случае (швы типа ЭА-Ба) трещины появились уже после 100— 200 циклов, то во втором — после 300—400 циклов. Характерно, что стыки исходного состояния, но сваренные с подогревом 350— 400° С, по своей надежности не уступали аустенитизированным стыкам. Развитие разрушений шло постепенно и поверхностная локальная трещина превратилась в сквозную примерно через 120—-138 циклов. Этим обстоятельством объясняется, по-видимому, отсутствие серьезных аварий на станциях при образовании локальных разрушений аустенитных паропроводов.  [c.150]

Использование материалов повышенной прочности с более плавными переходными кривыми, а также стремление к компромиссным конструктивным решениям с точки зрения работоспособности и стоимости изделий привели к возникновению некоторых новых оценок качества материала, базирующихся на ТНП. При испытаниях на динамическое раздирание (ДР) определяется вся переходная кривая для наихудших условий службы материала, т. е. при наличии быстро распространяющейся трещины. Положение переходных кривых зависит от толщины образца, вплоть до самой большой (75 мм для корпусов реакторов). На рис. 121 представлены кривые, иллюстрирующие поведение тонких (16 мм — сплошная кривая) и толстых (>75 мм) — штриховая кривая) образцов. Важно отметить, что ТНП не зависит от толщины образца при выбранном размере длины трещины (наплавки), так как толщина 16 мм оказывается уже достаточной для стеснения деформации, приводящей к хрупкому разрушению если размер трещины с толщиной меняется, то ТНП с ростом габаритов образца повышается. Переходная кривая для толстых образцов принята за предел интервала переходных температур (ИППТ) хрупко-вязкого перехода, так как сочетание высокой скорости деформации (динамическое испытание) и большая толщина (>75 мм) считаются наиболее жесткими условиями из тех, которые могут встретиться в процессе эксплуатации.  [c.209]

При циклических испытаниях определяют механические свойства, характеризующие способность материала протйвостоять усталости, т. е. процессу постепенного накопления необратимых изменений физико-механических свойств материала под действием переменных напряжений, в результате чего происходит его повреждение, образование усталостных трещин (частичное разделение материала под действием переменных напряжений), их развитие и усталостное разрушение (разрушение материала нагружаемого объекта до полной потери его прочности или работоспособности вследствие распространения усталостной трещины).  [c.306]


Смотреть страницы где упоминается термин Работоспособность и разрушение тел с трещинами : [c.331]    [c.221]    [c.341]    [c.163]    [c.108]    [c.57]    [c.50]    [c.66]    [c.128]    [c.151]    [c.206]    [c.2]   
Смотреть главы в:

Механические свойства сталей и сплавов при нестационарном нагружении  -> Работоспособность и разрушение тел с трещинами



ПОИСК



Работоспособность



© 2025 Mash-xxl.info Реклама на сайте