Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физическая картина

Проведение таких исследований позволило бы уточнить физическую картину вихревого эффекта, а также разработать методы интенсификации тепломассообменных процессов в устройствах технологического назначения.  [c.144]

Учитывая аналитические выражения (4.12) для нормированных относительных фазовых проницаемостей и замечания относительно условий (4.25) при выборе функций вида (4.26), можно отметить достаточно хорошее соответствие представленных на рис. 4.5 и 4.6 результатов при и = 2...3 физической картине течения.  [c.94]


Физическая картина столкновения с мишенью характеризуется долей частиц т), падающих на поверхность. Величина т] определяется как отношение площади поперечного сечения набегающего потока, в котором частицы данного размера сталкиваются с мишенью, так как их траектории пересекаются с ее поверх-  [c.209]

Интегральный метод импульсов. Для дальнейшего понимания физической картины взаимодействия фаз со стенкой на плоской пластине используется интегральный метод импульсов. Отмечалось, что интегралы пограничного слоя служат также в качестве корреляционных функций взаимодействий [725]. Вводя упрощения, принятые в теории ламинарного движения, можно найти распределения плотности и скорости, а также толщину пограничных слоев фаз.  [c.348]

Для выяснения физической картины явления разрывных колебаний рассмотрим эту же задачу, приняв, что m О [2J. Так как нас интересует в основном качественная  [c.220]

Однако в ряде задач удовлетвориться гипотезой скачка не представляется возможным, так как при этом нельзя выяснить с достаточной полнотой влияние отбрасываемого в уравнениях движения малого параметра на физическую картину движения динамической системы. Рассмотрение же полной динамической системы приводит к необходимости рассмотрения более сложных уравнений движения. Поэтому вполне понятна идея рассмотрения уточненной вырожденной математической модели, когда при составлении дифференциальных уравнений движения эти малые параметры учитываются. Тогда некоторые коэффициенты  [c.224]

Величины скалярные и векторные. Методы векторного исчисления, широко применяемые в механике и других отделах физики, имеют большое преимущество перед координатным методом в смысле сокращения письма, наглядности и физической картинности формул но самым главным преимуществом этих методов является то, что векторные формулы не связаны с системой ориентировки (т. е. системой координат) и не изменяются при переходе от одной системы к другой иными словами, векторные формулы инвариантны по отношению к преобразованиям координат. Не следует, однако, думать, что можно совершенно игнорировать координатный метод последний иногда оказывается удобнее векторного, особенно в тех случаях, когда требуется довести вычисление до конца и получить конкретный численный результат.  [c.18]

Несмотря на то, что трение есть одно из >/7777777 самых распространенных явлений природы и встречается почти во всех задачах механики, точные законы трения до сих пор не установлены вследствие трудностей, связанных Рис. 192. с выявлением полной физической картины возникновения силы трения и с количественной оценкой всех факторов, от которых эта сила зависит. Поэтому практически при учете сил трения пользуются законами, которые носят в основном качественный характер и представляют собой только некоторое приближение к действительности. Эти законы были установлены в результате первых опытов над трением, проделанных Амонтоном (1699 г.), и более точных экспериментальных исследований Кулона (1781 г.).  [c.197]


Электрическое поле. Взаимодействие зарядов по закону Кулона является экспериментально установленным фактом. Однако математическое выражение закона взаимодействия зарядов не раскрывает физической картины самого процесса взаимодействия, не отвечает на вопрос, каким путем осуществляется действие заряда q на заряд q .  [c.132]

На Международном конгрессе математиков в 1900 г. выдающийся математик Гильберт сформулировал знаменитые 23 проблемы. Шестой проблемой была проблема аксиоматизации физики. Гильберт предложил рассмотреть конечное число исходных аксиом, из которых чисто логически можно было бы вывести все следствия, достаточные для полного описания физической картины мира. Сам факт постановки такой проблемы как нельзя лучше говорил об убежденности ученых того времени в близости окончательного завершения физической науки.  [c.35]

АВТОР. Нет, не связана. ОППОНЕНТ. Я прихожу к мысли, что с волновыми представлениями следует обращаться осторожно. Как видно, волны бывают слишком разные. АВТОР. К сожалению, об этом иногда забывают. В представлениях о природе света когда-то господствовала точка зрения, согласно которой свет рассматривался как поток мелких корпускул. Потом победу одержала волновая концепция, причем сначала это были волны в некоей упругой среде, а затем уже электромагнитные волны. В течение столетия волновая концепция безраздельно господствовала в оптике. И вот в начале XX столетия оптикам пришлось снова обратиться к корпускулярной концепции. При этом волновые представления отнюдь не утратили своего значения они органически вписались в новую физическую картину. Конечно, картина усложнилась. Не обошлось без некоторых перегибов , проявившихся в том, что термин волновой стал слишком часто исполь-  [c.124]

По нашему мнению, обоснование модели с энергетической щелью получится как следствие строгой теории. Основное различие между нормальным и сверхпроводящим состояниями заключается, по-видимому, в том, что в последнем для возбуждения электрона требуется конечная энергия с. Магнитные свойства могут быть определены методами теории возмущении (см. раздел 3). Вероятным результатом может быть нелокальная теория, аналогичная теории, предложенной Пиппардом теория Лондона будет представлять только предельный, в действительности не реализующийся случай. Процессы релаксации при высоких частотах зависят от деталей модели. В заключение отметим, что фундамент строгой теории сверхпроводимости существует, но полное решение задачи сопряжено со значительными трудностями. Требуются новые радикальные идеи, в частности, для получения удовлетворительной физической картины сверхпроводящего состояния и выяснения природы параметра упорядочения, если он существует.  [c.778]

Таким образом, если материальную точку мы будем представлять себе буквально, то вместо конкретного и четкого представления о силах, возникающих в результате деформации тел, мы должны будем пользоваться представлением о силах, не имея возможности объяснить их происхождение. Между тем для полноты физической картины, которая дальше будет развита, необходимо ясно представлять себе не только результат действия сил, но и причины возникновения сил. Чтобы сохранить возможность говорить о деформациях, которые во многих случаях являются причиной возникновения сил, мы введем представление о материальной точке, понимая его, однако, не буквально. Мы условимся, что под материальной точкой следует понимать не точку, а протяженные тела, но ограничимся рассмотрением только таких движений этих протяженных тел, характер которых не зависит от размеров и формы тел.  [c.68]

Это выражение получено нами из рассмотрения частного случая движения электрических зарядов в металлическом проводнике. Для того чтобы выяснить, насколько общим является это выражение и можно ли его распространять на другие случаи движения электрических зарядов в магнитном поле, необходимо представить себе физическую картину движения зарядов в металлическом проводнике и возникновения силы F. В металлическом проводнике носителями зарядов являются свободные электроны, слабо связанные с атомами металла. Независимо от того, течет по проводнику ток или нет, свободные электроны совершают хаотическое тепловое движение со скоростями порядка сотен километров в секунду (эта скорость растет с ростом температуры). Пока электрическое поле в проводнике отсутствует, вследствие полной хаотичности теплового движения за единицу времени через любое сечение проводника в обе стороны проходит одинаковое число электронов, т. е. одинаковое количество электричества, и ток  [c.80]


Рассмотренные выше примеры достаточно поясняют физическую картину в тех случаях, когда взаимодействия обусловлены непосредственным соприкосновением тел ).  [c.169]

В стержне кратковременный начальный импульс все время движется как целое, без изменения формы. В системе с одной степенью свободы такой кратковременный импульс не может распространяться без искажения формы, так как под действием пружины груз большой массы только постепенно набирает скорость, т. е. импульс размывается. Поэтому в системе с одной степенью свободы, где импульс не может двигаться как одно целое, представление о движении энергии становится мало наглядным, а понятие скорости движения энергии — не вполне определенным. Но, как показано выше, физическая картина качественно остается прежней собственные колебания в системе с одной степенью свободы сопровождаются перемещением энергии в пределах колебательной системы, и эти перемещения происходят со скоростями того же порядка, как в стержне, имеющем длину, массу и упругость, соответствующие свойствам рассматриваемой системы с одной степенью свободы.  [c.703]

Для интегрирования системы нелинейных уравнений гиперболического типа широко используется метод характеристик. Решение рассчитывается с помощью характеристической сетки, выстраиваемой в процессе счета. Этот метод позволяет детально изучить физическую картину течения. Но его трудно применять при расчете сложных сверхзвуковых течений, когда внутри потока содержатся интерферирующие ударные волны, тангенциальные разрывы и другие особенности.  [c.267]

Выражение (10.9) показывает, что на каждой плоскости, перпендикулярной к оси хь при фиксированном t при переходе от точки к точке волновое поле не меняется и параллельно оси хь Если направление распространения плоской волны не совпадает с осью л 1, то поле перемещений будет описываться более сложными формулами, хотя физическая картина останется той же. Выведем соответствующие формулы.  [c.251]

Цикл Карно представлен на рис. 6.2 в виде кругового процесса 1-2-3-4-1. Этот цикл состоит из адиабат 2-3 и 4-1 и изотерм 1-2 м 3-4. Прямой цикл совершается по 1-2-3-4-1, и физическая картина явлений может быть представлена следующим образом. В точке 1 находится рабочее тело (газ) с давлением р , объемом V"i и температурой равной температуре нагревателя, заключающего в себе большой запас энергии. Поршень двигателя под влиянием высокого давления начинает двигаться вправо, при этом внутреннее пространство цилиндра сообщено с нагревателем, поддерживающим в расширяющемся газе постоянную температуру Tj посредством передачи ему соответствующего количества энергии в виде теплоты. Таким образом, расширение газа идет изотермически по кривой  [c.66]

Рассмотрим физическую картину возникновения гидравлического удара. Допустим, что в прямой цилиндрической трубе, в которую жидкость поступает из большого резервуара с постоянным уровнем (рис. 6.43), режим течения установившийся со скоростью Уо. Предположим, что в некоторый момент времени затвор 3 на конце трубы мгновенно закрывается. Тогда слои жидкости перед затвором мгновенно останавливаются и благодаря инерции массы жидкости в трубе подвергаются сжатию, а значит, давление в них резко повышается. Принимая во внимание упругость жидкости и стенок трубы, можно представить, что наряду с уплот-192  [c.192]

Рассмотрим физическую картину возникновения гидравлического удара. Пусть в прямой цилиндрической трубе, питающейся из большого резервуара с постоянным уровнем (рис. 100), существует установившийся режим со скоростью Vo, Допустим, что в некоторый момент затвор на конце трубы мгновенно закрывается. Тогда слои жидкости перед затвором окажутся мгновенно остановленными и благодаря инерции массы жидкости в трубе будут подвергнуты сжатию, а значит давление в них резко повысится. Принимая во внимание упругость жидкости и стенок трубы, можно представить, что наряду с уплотнением этих слоев произойдет растяжение стенок трубы и повышение в них напряжений. Тогда по истечении некоторого малого промежутка времени после закрытия затвора участок трубы Д/ перед ним окажется в состоя-  [c.208]

Соотношение (2.52) качественно хорошо согласуется с формулой, предложенной в [39]. Следует отметить, что в силу своей структуры соотношения типа (2.54) или другие для определения т не очень чувствительны к выбору параметров, отражающих расширение слоя в процессе роста скорости фильтрации газа, и связи между ними. Поэтому пог шность при сопоставлении экспериментальных и расчетных данных по порозности слоя может быть удовлетворительной, хотя сама формула не адекватна физической картине.  [c.55]

В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны И. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла на ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов,  [c.216]

К сожалению, в [197] не дано полное качественное разъяснение физической стороны явления. К числу жестких следует отнести допущение о пренебрежении осевой составляющей скорости. Для расчета профиля температуры необходимо знать характер распределения окружной скорости, который зависит не только от термодинамических параметров потока газа на входе в камеру энергоразделения вихревой трубы, но и от ее геометрии, а также от давления среды, в которую происходит истечение. Остановимся менее подробно на теоретических концепциях Шепе-ра [255] и А.И. Гуляева [59—61], рассматривавших процесс энергоразделения как результат обмена энергией в противоточном теплообменнике класса труба в трубе. Сохранив в принципе основные идеи представителей третьей фуппы гипотез, Шепер рассматривал ламинарный теплообмен. А.И. Гуляев, сохранив основные моменты физической картины Шепера, заменил лишь конвективно-пленочный коэффициент теплопередачи турбулентным обменом. Эти рассуждения не выдерживают критики по первому критерию оправдания, так как предполагают фадиент статической температуры, направленный от оси к периферии, что противоречит экспериментальным данным [34—40, 112, 116]. Однако опыты Шепера [255] и А.И. Гуляева [59-61] позволили сделать некоторые достаточно важные обобщения по макроструктуре потоков в камерах энергоразделения вихревых труб  [c.167]


Из предположения, что число Рейнольдса, рассчитанное по диаметру трубы и максимальной окружной скорости, составляет 10 -10 , следует что интенсивность пристенной турбулентности равна 5,1-7%, т. е. она почти на порядок меньше свободной. Кроме того, линейные масштабы свободной турбулентности, по крайней мере, на порядок больше линейных масштабов пристенной турбулентности. По этой причине коэффициент диссипации для пристенной турбулентности значительно выше, чем для свободной. В результате существенно более слабая пристенная турбулентность диссипирует намного быстрее свободной. Именно по этой причине ее роль в процессе энергоразделения несущественна. Вычисляя оптимальный радиус вихревой трубы, можно анализировать лишь свободную турбулентность, трактуемую как результат взаимодействия вращающихся с различной скоростью закрученных струек газа в плоскости, перпендикулярной оси трубы. По существу, рассматривается течение в плоскости, хотя в действительности в любом сечении камеры энергоразделения вихревой трубы имеются осевые компоненты скорости. Они важны при анализе физической картины течения, обусловливая взаимодействие вихревых потоков в осевом направлении. Это взаимодействие является дополнительной причиной генерации свободной турбулентности, роль которой возрастает по мере увеличения уровня осевых скоростей в трубе, т. е. с ростом относительной доли охлахаенно-го потока ц. По этой причине эффективность энергоразделения в противоточной вихревой трубе выше, чем в прямоточной, а в про-тивоточной трубе с дополнительным потоком выше, чем в обычной противоточной разделительной вихревой трубе.  [c.177]

Проведенный анализ подтверждает описанную выше физическую картину процесса зародышеобразования в стесненных условиях. Так, из рис.2 видно, что график зависимости безразмерного критического перегрева жидкости (или пропорциональной ему величины относительной работы образования яазяеспособного парового объема) от пористости имеет характерный изгиб. Для высокопористых материалов, характеризукщихся соотнояением , наблюдается уменьшение при возраста-  [c.85]

Результаты проведенных испытаний показали, что разработанная математическая модель соответствует описанной физической картине процесса фдуктуационного зародышеобразования новой фазы в чистой жид- j кости, насыщающей пористый слой. Получены выражения для перегрева жидкости и работы образования критического парового объема в пористом материале. Проведено сравнение со случаем возникновения зародыша в объеме свободной жидкости. Установлено, что график зависимости  [c.87]

Дальнейшее продвижение по шкале в сторону еще более коротких электромагнитных волн представляется ненужным в рамках нашего курса. Но если даже ограничить шкалу электромагнитных волн, с одной стороны, УКВ, а с другой — рентгеновским излучением, то нужно считаться с тем, что у читателя неизбежно возникает вопрос, можно ли в рамках единой теории как-то связать эти разнородные процессы. Из дальнейшего мы увидим, сколь законны такие опасения, но следует еше раз указать, что классическая электромагнитная теория света — это феноменологическая теория, описываюгцая распространение электромагнитных волн в различных средах без детального анализа микропроцессов, что, конечно, ограничивает объем получаемой информации, но вместе с тем облегчает применение теории к описанию распространения радиации самых различных типов. Для получения необходимых сведений в некоторых случаях придется дополнять теорию соображениями о движении электронов в поле световой волны, обрыве их колебаний и другими предположениями электронной теории, конкретизирующими физическую картину рассматриваемых явлений, как это впервые сделал Лоренц в начале XX в.  [c.14]

Действительно, на вагон действует, например, сила сопротивления воздуха, являющаяся функцией скорости вагона. За.мепяя эту силу постоянной величиной, мы отходим далеко от действительной физической картины движения вагона.  [c.105]

Одной из главных задач преподавания физики следует считать формирование представления об основах единой научной картины мира, базирующейся на достижениях современной теоретической и экспериментальной физики. Между тем именно эти вопросы не находят пока должного отражения в существующих учебниках. Естественное объяснение этого прртироречия состоит в том, что целостная физическая картина мира создается буквально в наши дни, поэтому книги, в которых освещаются последние достижения науки, можно рассматривать как необходимое дополнение к вузовским руководствам. Однако это скорее уход от проблемы, нежели ее решение. Относительно малая доступность этих изданий затрудняет их изучение, а встречающаяся порой чрезмерная детализация знаний в отдельных специальных областях физики, на первый взгляд мало связанных друг с другом, затрудняет восприятие физики как единой науки. Наверное, поэтому появляются монографии, в которых с акцентом на тот или иной аспект физической теории прослеживается развитие и становление фундаментальных физических идей с момента их зарождения в Древней Греции вплоть до кардинально новых теорий современной науки [1—3]. В этой ситуации нужны достаточно веские основания для того, чтобы предложить вниманию читателей новое учебное пособие.  [c.3]

Введение. Проведенный в предыдущем параграфе анализ показывает, что весь набор физических постоянных в целом и совокупность физические законов имеют фундаментальное значение для формирования свойств Вселенной и ее структуры. Принципиальное значение имеет переход от анализа роли отдельных постоянных в соответствующих физических теориях к вселенскому аспекту всей проблемы констант, что требует радикального изменения характера ее исследования в дальнейщем. Теперь уже решение проблемы постоянных неотделимо от исследования вопросов происхождения и эволюции Вселенной. Напомним, что остались невыясненными от1Юсящиеся к этой проблеме вопросы — бари-онная асимметрия Вселенной, изотропность реликтового излучения. Они относятся к интерпретации фундаментальных свойств материи и поэтому вряд ли могут решаться изолированно от проблемы постоянных. Общее решение скорее всего может быть найдено в рамках генеральной задачи науки—построения единой физической картины мира, В этом направлении учеными всего мира уже было предпринято немало усилий.  [c.210]

Мы должны отметить, что отклонения кривых от параболической формы очень малы и редко превышают 10%, а отклонения от более сложных кривых имеют еще меньшую величину и составляют всего несколько процентов. По-с.теднее было обнаружено только после очень точных экспериментов. Ввиду УТИХ обстоятельств, по-видимому, можно считать, что но крайней мере при высоких температурах для качественного рассмотрения сверхпроводимости с точки зрения двухжидкостиых моделей можно применять простую модель Гортера с a= /g. Это тем более справедливо, что физическая картина микроскопической природы двух жидкостей (nj[n, что то же самое, параметра по-])ядка) в настоящее время недостаточно ясна.  [c.637]

Заключительные замечания. Хотя существует некоторое качественное представление о природе сверхпроводящего состояния, мы до сих пор не имеем строгой математической теории или даже физической картины различия между нормальным п сверхпроводящим состояниями. Сверхпроводник представляет собой упорядоченную фазу, в которой квантовые эффекты распространяются на большие расстояния в пространстве (порядка 10 см для чистых металлов). Эта большая протяженность волновых пакетов, несомненно, объясняет магнитные свойства сверхпроводников. Как и в случае других фазовых переходов второго рода, сверхпроводник, по-видимому, характеризуется некоторым параметром порядка, который обращается в нуль в точке перехода. Однако существуюпцге физические толкования параметра упорядочения неубедительны, и у нас нет никакого представления о том, как параметр упорядочения связан с реальными величинами.  [c.777]


Из сказанного ясно, что в представлении об абсолютно жестких связях не содержится HHKaKoii новой физической картины по сраняению с той, которую мы рассматривали выше, учитывая, что все реальные тела деформируются и поэтому действуют  [c.173]

Становится совершенно очевидным, что единую физическую картину колебаний в различных колебательных системах можно иолучитб, только рассматривая колебательные системы как сплошные, каковыми и являются в действительности все колебательные системы. Собственные колебания в однородных сплошных колебательных системах возникают в результате того, что начальный импульс распространяется как целое по системе и отражается от ее концов. В неоднородных сплошных системах из-за неоднородности импульс размывается и картина очень усложняется. Заменяя реальную неоднородную сплошную систему воображаемой дискретной системой с конечным числом степеней свободы, часто можно избавиться от необходимости рассматривать сложную задачу о распространении импульса и движении энергии в системе но такая замена не может ничего добавить к физической картине колебаний в сплошной системе.  [c.703]

Дело здесь обстоит примерно так же, как при замене реального деформируемого тела воображаемым абсолютно жестким эта замена может нас избавить от некоторых расчетов, но не может дополнить физической картины рассматриваемого явления. Точно так же переход от сплошной колебательной системы к дискретной, т. е. замена реальных тел, имеющих массу и упругость, либо абсолютно жесткими грузами, либо не имеющими массы пружинами, может удростить реше-  [c.703]

При наличии скачков уплотнения пограничный слой обычно оказывает более сильное влияние на внешний поток, в некоторых случаях существенно изменяя картину всего течения. Дело в том, что в скачке уплотнения изменения скорости и температуры по направлению нормали к франту скачка, которое обычно мало отличается от направления потока, велики по сравнению с изменениями этих величин вдоль скачка. В пограничном слое изменения скорости и температуры в направлении потока обычно незначительны, в то время как изменения этих величин поперек пограничного слоя велики. Следовательно, в области взаимодействия скачка уплотнения с пограничным слоем скоройть и температура существенно изменяюкся как вдоль, так и поперек потока. Поэтому основные допущения теории пограничного слоя в этом случае перестают быть справедливыми и теоретическое исследование области взаимодействия скачков уплотнения с пограничным слоем представляет Ч резвычайно сложную задачу. Экспериментальные исследования этой области течения тоже являются не простым делом, однако полученные данные позволяют представить физическую картину взаимодействия и определить некоторые количественные закономерности.  [c.339]

Разработкой теории столь сложного физического влияния, каким является ги,а,равлнче-ский удар, наука обязана Н. Е. Жуковскому. В его работе О гидравлическом ударе в водопроводных трубах, вышедшей в свет в 1899 г., были впервые получены дифференциальные уравнения гидравлического удара и дан их общий интеграл, на основе которого была подробно проанализирована физическая картина процесса, рассмотрены распространение ударных воли в разветвляющихся трубах и их отражение в тупиках, установлен также метод определения наибольших значений дав- лений, возникающих ири быстрых (внезапных) закрытиях за,движек, дается обстоятельная экспериментальная проверка результатов, полученных теоретическим путем, н рассмотрен, наконец, ряд других практически важных вопросов.  [c.135]

Сопоставление расчетов с экспериментальными результатами разных авторов, относящихся к диффузорам с прямоугольными и криволинейными образующими, показывает удовлетворительную корреляцию, поэтому в одиннадцатой главе на основе описанного метода исследуются конкретные вопросы оптимизации диффузоров. Для поиска оптимальных конфигураций используется оптимальное управление заданного вида (ОУЗВ), в результате чего задача оптимизации сводится к задаче нелинейного математического программирования. Показаны индивидуальные особенности рассматриваемой задачи, а также новые улучшения ОУЗВ. Приводятся характерные формы оптимальных диффузоров и физическая картина движения в них. Показано влияние различных факторов (профиля скорости, габаритов и т.п.) на изменение формы оптимальных диффузоров. Даны конкретные примеры существенного улучшения гидро- и аэродинамического качества диффузоров за счет оптимизации.  [c.9]

Выражения (8.227) и (8.231) имеют в основе следующую физическую картину. Если в однородном бинарном растворе создать разность температур, то возникает поток компонента (вторые слагаемые уравнений), в результате которого появится градиент концентраций. Последний, в свою очередь, вызовет противоположно направленный фиковский поток (первые слагаемые уравнений), <оторый будет стремиться ликвидировать градиент концентрации. Следовательно, перенос данного компонента определится суммой фиковского и термодиффузионного потоков. Никаких ограничений при этом на раствор не накладывается. Он может быть бинарным или многокомпонентным, находиться в любом агрегатном состоянии.  [c.232]


Смотреть страницы где упоминается термин Физическая картина : [c.174]    [c.281]    [c.225]    [c.267]    [c.222]    [c.108]    [c.170]    [c.161]    [c.171]    [c.704]    [c.236]   
Смотреть главы в:

Принципы лазеров  -> Физическая картина



ПОИСК



Иерархия расстояний — взаимодействий — теорий Рамки современной физической картины миКлассическая механика Кинематика точки н твердого тела

Изгиб физическая картина

Износ, физическая картина

Картина мира физическая

Качественное описание физической картины

Общая физическая картина

Физическая картина износа. Некоторые подтверждения усталостной теории износа

Физическая картина процесса теплообмена в ЖРД

Физическая картина рабочего процесса в камере 1 сгорания

Физическая картина распространения возмущений, способы их возбуждения

Физическая картина течения

Физическая картина явлений в частотной потокочувствителыюй магнитной головке



© 2025 Mash-xxl.info Реклама на сайте