Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообменник противоточный

Средняя разность температур при перекрестном токе меньше, чем при противотоке, но больше, чем при прямотоке. При расчете Ш для сложных схем движения теплоносителей вначале определяют А7 в предположении, что теплообменник противоточный, а затем вводят поправки, численное значение которых берут для каждого конкретного случая из справочников [15]. При числе перекрестных ходов более трех, например, для широко распространенных змеевиков теплообменников (рис. 13.8 б) схему движения можно считать чисто противоточной или чисто прямоточной.  [c.108]


Средний температурный напор подсчитывается применительно к действующей в змеевиковом теплообменнике противоточной тепловой схеме  [c.565]

Точно таким же получается выражение для Ш и при других схемах движения теплоносителей, изображенных на рис. 13.6. Обратите внимание, что Д/б и Д/ — это перепады температур между теплоносителями на концах теплообменника. Только в прямоточном теплообменнике значение Д/б всегда равно разности температур теплоносителей на входе, а Д/м — на выходе. В противоточном теплообменнике теплоносители движутся  [c.107]

Колонну загружают сферическим катализатором со средним размером зерен 1,5 мм. Высокая плотность газа при 30 МПа и наличие теплообменных поверхностей в реакционном объеме позволяют вести процесс при числах псевдоожижения 1,5 и ниже, не нарушая однородной структуры псевдоожиженных слоев. Процесс протекает вблизи оптимальных температур, достигаемых зп счет ступенчатости и ввода противоточных теплообменников в слои катализатора.  [c.13]

Теплообменники типа флюидный поток , занимая промежуточное положение между аппаратами типа газовзвесь и движущийся слой , характерны повышенной концентрацией, которая может меняться в пределах 0,03—0,3 м 1м (гл. 8). Подобные теплообменники, по нашему мнению, особо перспективны (в частности, при противоточной схеме), поскольку позволяют объединить достоинства первых двух типов аппаратов. Однако степень изученности и разработки теплообменников с повышенной концентрацией недостаточна.  [c.361]

В отличие от [Л. 217] здесь в знаменателе записано располагаемое тепло, которое определено не как количество тепла, отданное греющей средой при ее охлаждении до температуры окружающей среды, а как максимальное количество тепла, которое может быть отнято в идеальном противоточном теплообменнике с бесконечно большой поверхностью. Это физически более обоснованно, так как в теплообменнике в пределе может иметь место лишь следующее равенство  [c.365]

В [Л. 71] приведены результаты исследования лабораторной модели противоточного теплообменника типа газовзвесь с камерами нагрева и охлаждения. В работе были предложены методика расчета и конструктивные рекомендации для теплообменников подобного типа. В частности, была показана целесообразность использования противоточных камер, так как, помимо известных теплотехнических преимуществ, противоток в газовзвеси позволяет увеличить время пребывания частиц при неизменной высоте камер н снизить аэродинамические потери. Установлено, что во многих случаях механический транспорт дисперсной насадки эффективнее пневматического. Приведены рекомендации по выбору материала, размера насадки и сечения камер. Технико-экономическое сравнение воздухонагревателя типа газовзвесь с трубчатым воздухонагревателем, проведенное для котла паропроизводительностью 60 г/ч, показало возможность снижения температуры уходящих газов до 100° С. Последнее может привести к повышению к. п. д. котла примерно на 4%, что соответствует экономии в затратах на топливо 15000 руб. в год.  [c.368]


Известны предложения по использованию расплавленного шлака в качестве жидкой матрицы в противоточном теплообменнике типа газовзвесь .  [c.372]

В Л. 368] описывается хорошо и давно известное устройство теплообменника типа свободной противоточной газовзвеси, но не с этажным, а параллельным расположением теплообменных камер. В этом случае несколько облегчается компоновка, но зато надобность в системах транспорта насадки (металлическая дробь 0,2— 0,4 мм) возрастает, по крайней мере (без резерва), вдвое (предусмотрены наклонные ковшевые элеваторы). Верхние бункеры в камерах отсутствуют — отвод газов и воздуха осуществляется сквозь слой подаваемой дроби.  [c.373]

Улучшение противоточных слоевых теплообменников в соответствии с требованиями, рассмотренными в гл. 9,  [c.375]

Некоторые результаты разработки и испытания высокотемпературного теплообменника перекрестного тока приведены в [Л. 91]. Схема перекрестного движения газов и насадки в теплообменных камерах была выбрана не только потому, что интенсивность процесса при перекрестной продувке слоя может быть выще, чем при противоточной (гл. 10), но и по конструктивным причинам упрощаются подводящие и отводящие воздуховоды, облегчается их компоновка с теплообменником, заметно уменьшаются потери тепла в окружающую среду, что особенно важно при высоких температурах и пр. Схема экспериментальной установки представлена на рис. 11-7. Взаимное горизонтальное движение газов и воздуха в теплообменнике может осуществляться по схеме прямотока либо противотока. Греющие газы — продукты сгорания керосина.  [c.378]

Пример 30-1. В противоточном водяном теплообменнике типа труба в трубе определить поверхность нагрева, если греющая вода поступает с температурой t --= 97° С и ее расход равен nii = 1 кг сек. Греющая вода движется по внутренней стальной трубе с диаметрами d ldi = 40/37 мм. Коэффициент теплопроводности стальной трубы 1 = 50 вт/м-град.  [c.495]

На холодном режиме работы установки сжатый воздух из магистрали разделяется на две части по числу вихревых труб. Один из потоков сжатого воздуха, минуя регенератор, подается к сопловому устройству двухконтурной вихревой трубы 3, проходя через которую нагревается и поступает к соплу эжектора-глушителя 4 в качестве эжектирующего газа. Второй поток сжатого воздуха охлаждается в теплообменнике 5 и подается ко входному устройству противоточной разделительной вихревой трубы 2, где осуществляется процесс перераспределения энергии и разделения исходного потока на два — охлажденный и подогретый. Подогретый поток противоточной разделительной вихревой трубы используется в качестве дополнительного потока двухконтурной вихревой трубы. Пройдя через нее, он охлаждается и подводится к теплообменнику для охлаждения исходного сжатого воздуха. Охлажденный поток трубы 2 поступает в термокамеру 1, охлаждает ее и далее подводится к теплообменному аппарату 5 для сра-  [c.243]

Теплообменники Линде просты по конструкции, но имеют один недостаток, свойственный всем противоточным теплообменникам, состоящим из пучка параллельных труб одинаковой длины, а именно большое гидравлическое сопротивление тракта низкого давления. Кроме того, в теплообменниках такого тина отношение полезной поверхности теплообмена к весу всей конструкции мало.  [c.100]

Цикл с противоточным теплообменником  [c.127]

Рекуперативные теплообменники подразделяют в зависимости от направления движения теплоносителей (рис. 15.2). Если теплоносители движутся параллельно в одинаковом направлении, теплообменник называют прямоточным (рис. 15.2, а), при противоположном направлении движения — противоточным (рис. 15.2, б). В теплообменнике с перекрестным током теплоносители движутся во взаимно перпендикулярных направлениях, при этом возможен однократный (рис. 15.2, в) и многократный (рис. 15.2, г) перекрестный ток. Встречаются и более сложные схемы движения теплоносителей (рис. 15.2, due).  [c.454]

На рис. 15.3 изображены температурные поля прямоточного (рис. 15.3, а) и противоточного (рис. 15.3, б) теплообменников. Индексами 1 и 2 отмечаются температуры и другие параметры соответственно горячего и холодного теплоносителя. Одним и двумя штрихами отмечаются параметры теплоносителя на входе и выходе из теплообменного аппарата.  [c.456]


Сравнение температурных полей прямоточного и противоточного теплообменников показывает, что при противоточной схеме имеется большая возможность изменения температуры теплоносителей в пределах аппарата. Если, например, необходимо нагреть холодный теплоноситель до максимально возможной температуры при заданной начальной температуре горячего теплоносителя /J, то при увеличении поверхности нагрева в прямоточном теплообменнике температура (2 будет приближаться к температуре t i, а в противо-точном — к.  [c.456]

Это выражение называется формулой среднелогарифмического температурного напора. Она одинаково пригодна для прямоточного и противоточного теплообменников (величины At и At" обозначены на рис. 15.3).  [c.458]

Благодаря большей величине среднего температурного напора рабочая поверхность при противоточной схеме движения жидкостей и прочих равных условиях будет наименьшей. Поэтому, если причины конструктивного характера не ограничивают выбор схемы движения теплоносителей, то предпочтение надо отдать противоточному теплообменнику по сравнению с прямоточным.  [c.459]

Эти теплообменники противоточные отсе-парированная продувочная вода движется внутри трубок. Если теплообменник рассчитан на то же давление, что и расширитель, предохранительный клапан ставится только на расширителе, Необходимая поверхность наррева теплообменников определяется но формулам, при(Веденным в гл, 21.  [c.33]

На практике чаще используются про-тивоточные схемы движения, по кольку при одинаковых температурах входящих и выходящих теплоносителей S7 при противотоке всегда больше, чем при прямотоке. Согласно формуле (13.3) это означает, что для передачи одного и гого же теплового потока Q при против эточной схеме потребуется теплообменник меньшей площади. Еще одно преим щество противоточного теплообменника заключается в том, что холодный теплоноситель в нем можно нагреть до температуры более высокой, чем температ ра греющего теплоносителя на выход t"> t (см. рис. 13.6). В прямоточном теплообменнике этого сделать невозможно.  [c.107]

Данные, полученные для неподвижного слоя, зачастую используются при расчете движущегося слоя, хотя теплообмен в этих случаях может быть существенно различен. Во многих случаях отмечаются весьма низкие значения коэффициентов теплообмена. Последнее связано с ранее рассмотренными особенностями аэродинамики и механики движения слоя, а также с уменьшением эффективности в плохо продуваемых участках и в зоне завершенного теплообмена (At—й)). По данным Китаева Б. И. в доменных и шахтных печах коэффициент теплообмена в 3—10 раз меньше расчетной величины [Л. 157]. В шахтных зерносушилках это расхождение достигает примерно 400 /о [Л. 252]. Данные, полученные Нортоном в полупромышленном теплообменнике типа противоточный движущийся слой при перегреве пара, подогреве воздуха и нагреве водорода, показали, что коэффициенты теплообмена с шаровой насадкой соответственно составили всего 19, 35, 84 вт1м -град [Л. 294]. В [Л. 383] на основе обработки результатов лабораторных и полупромышленных исследований получена зависимость  [c.320]

Это выражение дает заметно более высокие значения коэффициентов теплообмена, чем формулы (10-19) и (10-20). Определенным объяснением такого результата может служить, по-видимому, большая равномерность газораспределения (в камере противотока слой формировался как продолжение камеры типа поперечно продуваемый наклонный слой ). Результаты, полученные в Л. 328] по теплообменнику с однотипными противоточными камерами типа нагрев — охлаждение насадки, рассматриваются в гл. 11. Теплообмен в движущемся слое при его продувке по смешанной схеме (последовательное чередование противоточного и прямоточного движения газа) имеет место в аппаратах со встроенными многорядными коробами раздачи и отвода газа (шахтные зерносушилки, многозонные теплообменники и т. п.). Согласно [Л. 200] при охлаждении слоя сухого зерна пшеницы (Уф = 0,1- 0,4 м1сек, расстояние между коробами 120 мм, а = 860 м 1м и Кесл = 18-н 100)  [c.323]

В свою очередь каждую из приведенных групп будем различать по важнейшей характеристике дисперсных потоков — концентрации твердого компонента а) теплообменники типа газовзвесь , б) теплообменники типа флюидный поток , падающий слой , в) теплообменники типа движущийся плотный слой . Естественно, что характеристики теплообменников также зависят от взаимонаправления потоков (прямоточные, противоточные, перекрестные, многоходовые схемы), от особенностей твердого компонента (двухкомпонентные, многофазные и многокомпонентные среды мо-нодисперсные и полидисперсные частицы и т. п.), от назначения теплообменника (низкотемпературные и высокотемпературные воздухоподогреватели, регенераторы ГТУ, пароперегреватели, системы теплоотвода в ядерных реакторах и т. п.), от конструктивных особенностей (с тормозящими элементами, с вибрацией, в циклонных аппаратах) и пр.  [c.359]

В Чехословакии под руководством И. Шнеллера ведутся работы по созданию подобных теплообменников типа противоточно движущийся слой [Л. 328]. При наличии больших перепадов давления (отношение давления в камерах 2 5) разработан и предварительно испытан при t = A2T теплообменник с периодически работающими перепускными органами в виде поршневых механических затворов, между которыми имеется дополнительная емкость. Установка полностью автоматизирована. Насадка — керамические шарики (98% АЬОз) диаметром 10 мм. Обнаружено, что потери воздуха из-за неплотностей в запорных органах не превышали 1,5%. Поскольку количество насадки, выходящей за один цикл из теплообменника, составляет не более /з ее содержания в камере, то предполагается возможность расчета количества передаваемого тепла по зависимости, полученной для регенератора непрерывного действия. В работе рассматривается отношение rip к теоретической эффективности Tip.o- Последняя была определена с использованием формулы  [c.376]

К сожалению, в [197] не дано полное качественное разъяснение физической стороны явления. К числу жестких следует отнести допущение о пренебрежении осевой составляющей скорости. Для расчета профиля температуры необходимо знать характер распределения окружной скорости, который зависит не только от термодинамических параметров потока газа на входе в камеру энергоразделения вихревой трубы, но и от ее геометрии, а также от давления среды, в которую происходит истечение. Остановимся менее подробно на теоретических концепциях Шепе-ра [255] и А.И. Гуляева [59—61], рассматривавших процесс энергоразделения как результат обмена энергией в противоточном теплообменнике класса труба в трубе. Сохранив в принципе основные идеи представителей третьей фуппы гипотез, Шепер рассматривал ламинарный теплообмен. А.И. Гуляев, сохранив основные моменты физической картины Шепера, заменил лишь конвективно-пленочный коэффициент теплопередачи турбулентным обменом. Эти рассуждения не выдерживают критики по первому критерию оправдания, так как предполагают фадиент статической температуры, направленный от оси к периферии, что противоречит экспериментальным данным [34—40, 112, 116]. Однако опыты Шепера [255] и А.И. Гуляева [59-61] позволили сделать некоторые достаточно важные обобщения по макроструктуре потоков в камерах энергоразделения вихревых труб  [c.167]


В рассматриваемой схеме (рис. 5.11) неиспользованные в рабочей камере хладо- или теплоресурсы утилизируются в теплообменнике, охлаждая или подогревая в зависимости от режима сжатый газ, поступающий на вход в противоточную разделительную вихревую трубу. Вихревой холодильно-нагревательный агрегат (ВХНА) состоит из термокамеры 7, противоточной разделительной вихревой трубы 2, двухконтурной вихревой трубы 3, эжектора-глушителя 4, теплообменника 5, нагревателя 6, воздушных электроклапанов 7—10.  [c.243]

Как видно, основные потери приходятся на компрессор с теплообменным аппаратом и низкотемпературную противоточную вихревую трубу. Если потери в вихревой трубе трудноустранимы и связаны с ее необратимостью, а их уменьшение может быть достигнуто лишь в результате совершенствования процесса энергоразделения, то суммарные потери могут быть снижены использованием эксергии тепла. При этом отбираемое в теплообменнике тепло может использоваться на нафев сжатого воздуха, поступающего в вихревую трубу, работающую на генерацию нафетого потока в случае использования двухкамерного термостата. Вариант схемы двухкамерного термостата без утилизации тепла сжатого воздуха на входе из компрессора (рис. 5.17) позволяет полу-  [c.251]

Кондиционеры КВ-2-400 и КВ-3-400, предназначенные для душирования кабины машиниста, не требуют специальной очистки воздуха от масла и капельной влаги. Это обусловлено тем, что каналы отвода охлажденного потока в устройствах, соединяющих предшествующую ступень расширения с последующей, выполнены в виде пластинчатых рекуперативных противоточных теплообменников — рефрижераторов, размешенных в канале отвода охлаждаемого воздуха. В рабочую зону машиниста подается чистый воздух из вентиляционной системы после охлаждения на сребренной поверхности теплообмена рефрижераторов (летний режим) либо после подогрева на наружном оребрении поверхности камер энергоразделения (зимний режим). Число вихревых камер удваивается при переходе к каждой последующей ступени. Во второй и последующих ступенях используется коллективное оребрение камер энергоразделения в виде пакетов теплопроводных пластин с соосными отверстиями, число которых соответствует числу вихревых труб.  [c.280]

Сравнительно недавно развитие техники низких температур привело к появлению теплообменных аппаратов, сочетающих качества противоточных теплообменников и регенераторов. Эти так называемые реверсивные теплообменнР1кн, применяемые в воздухо-ожижительных и воздухо-разделительных установках Коллинза [212]. Их отличие от регенераторов состоит в том, что прямой и обратный потоки газа проходят через аппарат одновременно, каждый через свою секцию. Содержащиеся в прямом потоке примеси осаждаются на иоверхпости капала и затем уносятся обратным потоком, проходящим через этот канал после переключения потоков, подобно тому, как это происходит в регенераторах.  [c.99]

От двух- и трехтрубных противоточных теплообменников постепенно перешли к свитому в пакет пучку параллельных труб. Впервые описание таких противоточных теплообменников было дано Линде [230]. Джекобе и Коллинз [221] провели испытание трех типов теплообменников следующей конструкции  [c.109]

Джекобе и Коллинз испытали также противоточный теплообменник типа геликоидальной трубки , предложенный ранее Нельсоном. Этот теплообменник, впервые описанный Быховским [171], применялся в ожижителе водорода небольшой производительности, рассмотренном в п. 27. Конструкция теплообменника схематически изображена на фиг. 89. Внутренняя трубка  [c.110]

Цикл с охлаждением жидким водородом. Эффект охлан дения может быть получен в гелиевом ожижителе, используюш ем цикл, изображенный на фиг. 3,а. Этот цикл суш ественно отличается от цикла, представленного на фиг. 2. Теплая зона включает противоточный теплообменник В и последующую за ним ступень охлаждения, обеспечиваюш ую понижение температуры ниже инверсионной с тем, чтобы нри выбранных давлениях получить положительный изотермический эффект дросселирования. В этом случае стационарность достигается только тогда, когда  [c.129]

Каков бы ни был способ получения температуры ниже инверсионной точки—с помощью жидкого водорода, испаряющегося при пониженном давлении, или с помощью холодного газа из детандера,—во всех случаях непрерывный поток предварительно охлажденного сжатого гелия должен пройтп противоточный теплообменник или насадку регенератора и расшириться изоэнтальпическп в дроссельном вентиле.  [c.132]

Эффективность противоточного теплообменника определяется отношением действительного повышения температуры холодного потока во время его прохода через теплообменник к максимально возможному новышепию, которое происходило бы при нулевом температурном напоре. Очевидно, что температура нагреваемого потока никогда не может превышать температуру входящего теплого потока, даже когда теплоемкость последнего значительно больше. Если же нагреваемых ноток имеет более высокую теплоемкость, то максимальное повышение температуры определяется количеством тепла, liOTopoe теплый ноток может передать при охлаждении от своей первоначальной температуры до начальной температуры холодного потока. Часто вместо эффективности удобнее говорить о прямых потерях, так как они пропорциональны измеряемой разности температур 7 на теплом конце теплообменника.  [c.135]

Уравнения (1.1.14) вместе с граничными условияг. и (1.1.15) представляют собой динамическую модель прямоточного теплообменника. Вывод уравнений, описывающих динамику п рот и во-точного теплообменника, аналогичен. Отличие состоит лишь в том, что при любом выборе направления оси ОХ, последняя будет направлена навстречу потоку одного из теплоносителей. Это приведет к тому, что в уравнении, выведенном для данного теплоносителя, изменится знак при производной по пространственной координате. Например, если направление оси ОХ совпадает с направлением движения первого теплоносителя, уравнения динамической модели противоточного теплообменника имеют вид  [c.10]


Смотреть страницы где упоминается термин Теплообменник противоточный : [c.441]    [c.13]    [c.277]    [c.362]    [c.368]    [c.372]    [c.373]    [c.381]    [c.99]    [c.112]    [c.461]    [c.406]   
Динамика процессов химической технологии (1984) -- [ c.10 , c.46 , c.49 , c.50 , c.178 ]



ПОИСК



Динамическая модель процесса в противоточном теплообменник

Математическая модель противоточного теплообменника

Оператор противоточного теплообменника

Противоточность, среднее значение эквивалентного индекса для схем теплообменников

Противоточный теплообменник типа

Противоточный теплообменник типа весовые функции по различным каналам связи

Противоточный теплообменник типа выходными параметрами

Противоточный теплообменник типа каналам связи

Противоточный теплообменник типа каналы связи между входными

Противоточный теплообменник типа математическая модель

Противоточный теплообменник типа передаточные функции по различным каналам связи

Противоточный теплообменник типа переходной процесс

Противоточный теплообменник типа переходные функции по различным

Противоточный теплообменник типа профили температуры в потока

Противоточный теплообменник типа стационарный режим работы

Противоточный теплообменник типа труба в трубе

Противоточный теплообменник типа функциональный оператор

Теплообменники

Теплопередача в прямоточном теплообменнике типа труба в труТеплопередача в противоточном теплообменнике типа труба в трубе



© 2025 Mash-xxl.info Реклама на сайте