Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура и характеристики механических свойств

Структура и характеристики механических свойств  [c.227]

Общая характеристика термической обработки. Термической обработкой называется тепловая обработка, в результате которой изменяются структура и физико-механические свойства металлических сплавов. Термической обработке подвергаются как заготовки (кованые, штампованные, литые и др.), так и готовые детали. Заготовки обычно подвергают термообработке для улучшения структуры, снижения твердости, а обрабатываемые детали — для придания им требуемых свойств твердости, прочности, износостойкости, упругости и др.в результате термической обработки свойства сплавов могут быть изменены в широких пределах. Возможность значительного повышения механических свойств после термической обработки деталей машин и изделий позволяет увеличить допускаемые напряжения, уменьшить размеры и вес деталей и механизмов, повысить надежность и срок службы изделий. Улучшение свойств в результате термической обработки позволяет применять сплавы более простых составов. В результате термической обработки сплавы приобретают также некоторые новые свойства, в связи с чем расширяется область применения многих сплавов.  [c.119]


Учёт качества поверхности. Понятие качества поверхности охватывает 1) геометрические его характеристики, описывающие отклонения формы поверхности от установленной чертежом (отклонения в макрогеометрии) и шероховатость поверхности (микрогеометрия) 2) характеристики механических свойств и структуры поверхностного слоя материала. Реальные поверхности трения деталей всегда имеют отступления от заданной правильной геометрической формы, всегда обладают той или иной шероховатостью и их поверхностный слой обычно бывает непредвиденным образом изменён в своих свойствах вследствие нагревов и наклёпа при механической обработке и других причин.  [c.200]

Фиг. 9. Характеристика механических свойств стали (0,8/о С), имеющей зернистую и пластинчатую структуру при одинаковой твёрдости /—зернистая структура 2—пластинчатая структура. Фиг. 9. Характеристика <a href="/info/58648">механических свойств стали</a> (0,8/о С), имеющей зернистую и пластинчатую структуру при одинаковой твёрдости /—зернистая структура 2—пластинчатая структура.
Механические свойства отливок из серого чугуна будут тем выше, чем меньше в чугуне графита, чем мельче пластинки графита, чем они сложнее по форме и чем равномернее они расположены в основной массе металла. Основной характеристикой механических свойств чугуна служит временное сопротивление разрыву. Серый чугун не обладает хорошими пластическими свойствами. Но вместе с тем вследствие присутствия в его структуре пластинок графита серый чугун малочувствителен к надрезу. Чугун благодаря своим пластинкам имеет как бы надрезы во всей своей массе, вследствие чего дополнительные надрезы не имеют большого значения, как в сталях. Нередко наблюдаются случаи, когда чугунные детали при наличии в них видимых трещин продолжают длительное время служить безотказно.  [c.433]

В качестве методической основы изложения материалов выбраны следующие положения. Основное внимание уделено физико-механическим свойствам титана современного производства и влиянию на них различных легирующих элементов с тем, чтобы конструкторы и технологи могли достаточно свободно и рационально выбирать тот или иной серийный сплав. Специально рассмотрено влияние вида и габаритов полуфабрикатов на свойства сплавов, что связано с различным характером их структуры (гл. I, И). Из механических свойств наиболее подробно рассмотрены те, которые определяют работоспособность деталей различных узлов и механизмов — ползучесть и длительная прочность, усталость, коррозионно-механическая прочность и т. п. (гл. III, IV). Гл. V посвящена антифрикционным свойствам титана и методам их улучшения, так как эти характеристики в значительной мере лимитируют применение титановых сплавов в различных механизмах с узлами трения.  [c.4]


Контроль механических свойств начинается еще при производстве металла на металлургических заводах. Когда металл или прокат поступает к потребителю, например на машиностроительные заводы, его отбирают в зависимости от уровня характеристик механических свойств для изготовления тех или иных изделий с учетом условий их эксплуатации. При изготовлении изделий металл подвергается различной технологической обработке (механической, термической и др.), под воздействием которой происходят изменения в структуре и механических свойствах. Поэтому необходим контроль механических свойств металла и на различных стадиях изготовления изделий.  [c.28]

Различия исследованных конструкционных материалов по характеристикам механических свойств, структуре, технологиям получения обусловливают особенности их испытаний на трещиностойкость. Этому обстоятельству уделяли повышенное внимание — вопросы точности измерений, обработки диаграмм деформирования и разрушения, достоверности полученных значений характеристик трещиностойкости имели приоритетное значение.  [c.9]

Установлено, что в результате введения в алюминиевые деформируемые и литейные сплавы, а также в серый чугун и в наплавочные порошки НП химических соединений происходит измельчение структуры литых изделий, в связи с чем повышается уровень характеристик механических свойств, пластичности и износостойкости.  [c.291]

Все литейные цинковые сплавы имеют очень узкий температурный интервал кристаллизации, содержат много эвтектики, поэтому обладают хорошей жидкотекучестью и дают плотные отливки. Лучшими способами получения отливок являются литье под давлением и литье в кокиль. Относительно низкая температура литья (440-470 °С) определяет легкие условия работы пресс-форм и кокилей, а высокая жидкотекучесть позволяет отливать тонкостенные детали сложной формы. В некоторых случаях (детали особо сложной конфигурации) применяется литье в песчаные формы. Отливки, полученные таким способом, содержат большое количество пор, имеют более крупнозернистую структуру, что приводит к снижению и значительному разбросу характеристик механических свойств.  [c.717]

Существенной анизотропии характеристик механических свойств, в том числе предела прочности, можно ожидать у металлических композиционных материалов, которые по структуре сходны с армированными стеклопластиками. Это обусловлено резким различием свойств пластичной матрицы и армирующих металлических или  [c.222]

Н. С. Стрелецким и А. Р. Ржаницыным на основании статистических кривых распределения возникающих усилий и отклонения механических свойств от нормальных характеристик, а также анализа отклонений между действительными и расчетными усилиями предложена структура запаса прочности п в виде произведения трех частных коэффициентов  [c.20]

Из динамических испытаний самым распространенным является испытание на ударный изгиб. Этим испытанием определяют ударную вязкость K U, т. е. работу, затраченную иа излом надрезанного образца, зависящую от пластичности и прочности. Учитывая, что нагрев образца проводят вне копра и при переносе его из печи к месту испытания теряется тепло на опорах копра, то Точно установить температуру испытаний трудно. При определении численных значений характеристик механических свойств стали или сплава необходимо иметь в виду, что значения эти условные. Они зависят от внутренних и внешних факторов. К внутренним факторам относятся состояние (литое, деформированное, кованое, прокатанное и т. п.) и структура (равноосная, столбчатая, мелкая, крупная) к внешним факторам — температура, схема и скорость деформирования, размеры образца, условия нагружения (дробное или непрерывное) и др.  [c.143]

С увеличением абсолютных размеров штампуемых деталей уменьшается жесткость инструмента (при той же конструкции), резко увеличиваются деформации поперечного и продольного изгиба, снижается однородность структуры и абсолютные величины характеристики механических свойств штамповых сталей и материалов При штамповке более крупных деталей необходимо корректировать существующие и создавать новые конструкции инструмента. К числу перспективных направ.тений относятся  [c.104]


В свете изложенного обратим особое внимание на следующее. На основании установленных закономерностей поведения металла при объемном пластическом деформировании, соотношений характеристик механических свойств и параметров структуры и выявленных структурных критериев можно оценить состояние металла поверхностных слоев, деформированных при различных условиях и, в частности, в условиях контактных взаимодействий при трении.  [c.23]

В расчетные формулы механики трения обычно вводят значения исходных характеристик механических свойств, сильно отличающихся от действующих на контакте и определяющих поведение пары трения в целом. В связи с этим весьма важна возможность количественной оценки степени развивающейся пластической деформации и действующих на контакте истинных напряжений течения. Для получения указанных характеристик в зоне контактного взаимодействия можно использовать рассмотренную выше взаимосвязь механических свойств и параметров структуры для объемного деформирования.  [c.23]

ЗЧ сложным влиянием состава и структуры стали на склонность к изменению характеристик механических свойств при наводороживании  [c.20]

При конечной пластической деформации таких скалярных характеристик всей предшествующей деформации можно установить две. На значения этих характеристик должны оказывать влияние как изменения структуры, так и изменения механических свойств физического вещества, которые неизбежно сопровождают его пластическое течение.  [c.57]

В механике деформируемых тел среда рассматривается как сплошная с непрерывным распределением вещества. Поэтому напряжения, деформации и перемещения считаются непрерывными и дифференцируемыми функциями координат точек тела. Предполагается, что любые сколь угодно малые частицы твердого тела обладают одинаковыми свойствами. Такое толкование строения и свойств тел, строго говоря, противоречит действительности, так как все существующие в природе тела в микроскопическом смысле являются неоднородными. Под дефектами структуры ( неоднородностью ) следует понимать поликристаллическое строение материала, местные нарушения постоянства химического состава, наличие инородных примесей, микротрещины и другие дефекты, приводящие к локальным возмущениям поля напряжений, Однако в силу статистических законов относительные перемещения точек реального тела можно считать практически совпадающими с перемещениями соответствующих точек однородной модели. Чем меньше относительные размеры дефектов, тем больше оснований считать приемлемыми методы механики сплошной среды, оперирующей усредненными характеристиками механических свойств материала.  [c.11]

Зависимость между характеристиками механических свойств и тонкой кристаллической структуры  [c.277]

Корреляция между характеристиками механических свойств и тонкой кристаллической структурой при отпуске закаленных и холоднодеформированных сталей установлена К. Ф. Стародубовым [254], а между твердостью и величиной блоков при отпуске закаленных углеродистых и низколегированных конструкционных сталей — Л. И. Миркиным [524]. Таким образом, можно сделать вывод, что связь между ударной вязкостью и величиной микроискажений кристаллической решетки матрицы, а также величиной областей когерентного рассеяния является закономерной и проявляется во многих случаях. Следовательно, рентгеновским методом можно оценить запас вязкости после различных обработок. При этом необходимо учитывать, что рентгеновский метод дает возможность определить лишь среднюю величину микроискажений матрицы. Зависимость свойств углеродистых сталей от температуры деформации аналогична по характеру зависимости свойств от температуры испытании. Поэтому установленная для случая теплой прокатки взаимосвязь между характеристиками механичес-  [c.280]

При выборе металлического материала для аппаратуры и машии, работающих при воздействии высоких температур, необходимо учитывать те изменения структуры и свойств, которые они при этом претерпевают. При высоких температурах происходит интенсивное окисление поверхности металлов, в особенности при воздействии на поверхность горячих газов, и происходит понижение прочности металлов, в результате чего обычные характеристики механических свойств (о и 0. ) уже не всегда являются показательными. Следует знать, что при длительном пребывании стали (исчисляемом сотнями и тысячами часов) в интервале температур 40Э— 00 в ней возможно возникновение тепловой хрупкости. Последняя выявляется ударной пробой. Тепловая хрупкость зависит от времени выдержки, химического состава стали и ее термообработки. В углеродистой стали тепловая хрупкость может возникнуть в том случае, когда в условиях эксплоатации она претерпевает пластическую деформацию. С точки зрения термической обработки закалка с последующим высоким отпуском тормозит возникновение тепловой хрупкости.  [c.80]

Вредное влияние фосфора на свойства сварных соединений заключается в снижении высокотемпературных характеристик металла шва вследствие ослабления межкристаллитных границ (при выделении легкоплавких включений) и в ухудшении механических свойств швов при нормальной и низких температурах. Последнее обусловлено снижением пластичности металла в результате растворения фосфора и наличием на границах кристаллитов хрупких неметаллических прослоек. Так как растворимость фосфора в аустените ниже, чем в феррите, опасность образования кристаллизационных трещин и снижения механических свойств металла шва значительно больше для швов с аустенитной структурой.  [c.264]


Изложенные выше соображения по поводу склонности материалов к хрупкому разрушению не позволяют предсказать характер разрушения материала, в котором уже образовалась трещина. Возможно, это связано с тем, что у большинства материалов при увеличении скорости деформирования резко повышается предел текучести. Микротрещины в материале могут образоваться в зонах локализации деформации. Таким образом, зная лишь характеристики макропластичности (кривые деформирования) при растяжении гладких образцов, нельзя достоверно оценивать в общем случае склонность материала к хрупкому разрушению. Примером разрушения детали из стали, имеющей отношение 0 0,2/сГв < 0,87, явилось хрупкое разрушение корпуса насоса, работающего в условиях сложного напряженного состояния, для которого в месте образования трещины значение А = (Гг/о = 0,4. Корпус был изготовлен из литой стали 20Х13Л, имевшей грубую структуру и следующие механические свойства <Го.2 = 293 МПа сг = 451 МПа б = 10% ф = 9,8% (рис. 2.7, б). Разрушение корпуса было вызвано аварийным превышением давления. Из металла разрушенного корпуса были изготовлены образцы типа Менаже для испытания на ударный изгиб с радиусом в надрезе 1 мм. Значение уд ной вязкости (удельной работы разрушения) оказалось равным 70-100 кДж/м .  [c.85]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

Для изготовления ряда деталей применяется латунь ЛО70-1. Укажите состав и опишите структуру сплава. Приведите общую характеристику механических свойств сплава и причины введения олова в данную лат/нь.  [c.148]

Анализ экспериментальных результатов исследований по формированию фазового состава, структуры и физико-механических характеристик МСС типа 03Х11Н10М2Т-ВД показал возможность расширения области их применения и повышения надежности изготовляемых из них конструкций. Установленные закономерности изменения фазового состава, структуры и физико-механических характеристик при различных режимах ТО и ТЦО позволяют прогнозировать изменения физико-механических свойств, размеров, уменьшение напряжений в процессе изготовления различных конструкций из этих МСС, в том числе при сочетании их с другими сталями и сплавами. Полученные закономерности изменения физических свойств (коэрцитивной силы Н( , тока размагничивания Тр, изменение фазы фз третьей гармоники и ТЭДС) могут быть использованы для оценки фазового состава и структуры МСС.  [c.180]

Очевидно, что более мелкая структура и пониженное газосодер-жание в слитках, полученных с использованием твердой шихты, способствуют снижению пористости и получению более высокого уровня характеристик механических свойств [37]. Так, временное сопротивление ст g образцов, вырезанных из промежуточной и центральной зон слитков, полученных литьем на твердой шихте, выше, чем для слитков на жидкой шихте соответственно на 20,6 и 18,8 %. Относительное удлинение 5 оказывается выше для всех трех зон слитков на твердой шихте (см. рис. 9.7).  [c.275]

Механические свойства матрицы являются определяющими для свойств композиций при сдвиге, сжатии и нагружении нормальными напряжениями в направлениях, отличных от ориентации волокон, а также в сопротивлении композиций усталостному разрушению. С ростом механических характеристик матриц пропорционально увеличиваются характеристики механических свойств композиций при сдвиге и сжатии. В волокнистых композиционных материалах усталостное разрушение начинается с матрицы при достижении в ней определенного напряжения. Гетерогенная структура материала, различие в уровнях напряженности волокон и матрицы, а также наличие поверхностей раздела затрудняют процесс зарождения и роста трещин в направлении, перпендикулярном к направлению армирования, и образование мятигтряльной трещины, приводящей к разрушению. Поэтому у композиционных материалов более высокое сопротивление y iajio itiOHy разрушению, чем у традиционных материалов. Так, например, отношение усталостной прочности (на базе 10 циклов) к пределу прочности у стандартных алюминиевых и магниевых сплавов составляет 0,2— 0,3, а у бор алюминиевой композиции ВКА-1—0,7—0,75, т. е. в 3—4 раза больше.  [c.586]

О. Г. Соколова [4] при изучении тонкой и сверхтонкой структур железомарганцевых (е+у) сплавов обнаружен ряд новых явлений найдены условия зарождения и стабилизации е-фазы. Обнаружено явление сверхпластичности в районе прямого и обратного 7 е-перехода и механические последействия (механическая память), выявлена роль указанных процессов на физические, механические и коррозионно-механические свойства. На основании этих исследований была предложена для технического использования немагнитная двухфазная сталь марки Г20С2. Исследование таких важных эксплуатационных характеристик как ударная вязкость, сопротивление вязкому и хрупкому разрушению, характер разрушения, проведенное в ЦНИИЧМ им. И. П. Бардина, расширило возможности практического использования этой стали.  [c.11]

Специфика строения армированных пластиков (стеклопластиков и др.), неоднородность их структуры и другие факторы приводят к больигому разбросу экспериментальных данных при определении различных механических характеристик, особенно пределов прочности на растяжение, сжатие и сдвиг. Рассеяние пределов прочности является свойством этих материалов, представ-ЛЯЮ1ЦИХ собой системы из неравнопрочных и неравнонагруженных нитей. Статистический характер механических свойств армированных пластиков подробно исследовался в работах многих авторов [48], [57] и др. Исследования показали, что коэффициент вариации V, представляющий собой отношение среднего квадратичного отклонения к среднему арифметическому значению соответствующей характеристики механических свойств, может служить показателем неоднородности материала. Коэффициент вариации зависит от многих факторов внешней температуры, харак-  [c.175]


До сих пор нет единого мнения о связи между скоростью роста трещин и другими характеристиками механических свойств металлов1 Описание экспериментальных данных по распространению усталостной трещины с помощью коэффициента интенсивности напряжений позволяет сопоставить результаты испытаний сталей различного класса и структуры в разных условиях нагружения.  [c.312]

При СПД микроструктура остается равноосной до самых больших степеней или трансформируется в равноосную в процессе деформации при наличии исходной неравноосной микроструктуры в материале (см. разд. 2). В сплаве МА21 первоначально вытянутые зерна в направлении прессования в процессе деформации становятся равноосными, в материале исчезает разнозернистость, а взаимные перемещения зерен и фаз относительно друг друга в результате интенсивного ЗГП приводят к перераспределению зерен и образованию структуры эвтектоидного типа (рис. 55). Наряду с этими изменениями микроструктуры сплава, как будет показано ниже, происходит выравнивание химического состава фазовых составляющих (а- и р-твердых растворов) и в то же время в процессе СПД не образуется субструктура, т. е. сплав приобретает более равновесное состояние. Вероятно, что такие структурные изменения в процессе СПД являются одним из основных факторов, приводящих к дополнительному приросту прочностных характеристик и стабилизации механических свойств.  [c.144]

Меньшая степень влияния ВТЦО на свойства деформируемых сплавов объясняется тем, что они менее легированы и в их структуре сравнительно мало фаз с отличными от алюминиевой матрицы теплофизи-ческими характеристиками. Однако характерные для деформируемых сплавов интерметаллиды в мелкодисперсном виде увеличивают протяженность межфазных границ, что, в свою очередь, является положительным фактором при возникновении структурных напряжений. Поэтому в какой-то степени при ВТЦО деформируемых сплавов имеют место процессы, характерные и для литейных. Это обстоятельство, очевидно, служит причиной интенсификации диффузии и повышения механических свойств деформируемых сплавов по сравнению со стандартными режимами обработки.  [c.145]

Структура реальных металлов и сплавов и распределение ее дефектов неодинаковы даже в пределах одного образца. Поэтому механические свойства, определяемые этой структурой и дефектами, строго говоря, различны для разных объемов одного образца. В результате те характеристики механических свойств, которые мы должны оценивать при испытаниях, являются ареднестати-стическими величинами, дающими суммарную, математически наиболее вероятную характеристику всего объема -образца, который принимает участие в испытании. Даже при абсолютно точном замере механических свойств они будут неодинаковы у разных образцов из одного и того же материала. Инструментальные (систематические и случайные) ошибки определения характеристик свойств, связанные с измерением нагрузок, деформаций, размеров и т. д., еще более увеличивают разброс экопериментальных результатов. Задачи статистической обработки результатов механических испытаний — оценка средного значения свойства и ошибки в определении этого среднего, а также выбор минимально необходимого числа образцов (или замеров) для оценки ореднего с заданной точностью.  [c.23]

Так как полимеры этого типа содержат свободные реактивные группы, при нагревании и на холоде при взаимодействии с отвер-дителями (гексаметилендиамин, меламин и др.) их можно превращать в полимеры, имеющие пространственную структуру. Условия процесса и соотношение реагентов резко влияют на молекулярный вес (500—5000) и физико-механические свойства получаемого полимера. В зависимости от молекулярного веса смолы могут быть твердые и жидкие (ЭД-5, ЭД-6, ЭД-13 и др.). Эпоксидные смолы, отвержденные мочевинно-фенолформаль-дегидными смолами и аминами, используют для получения различных материалов, обладающих высокими эксплуатационными характеристиками на воздухе и в агрессивных средах при нормальной температуре, а модифицированные жирными или смоляными кислотами используют для покрытия полов, изготовления грунтовок, футеровочных составов и т. п.  [c.247]

Кроме того, имеются ГОСТы на отливки из антифрикционного и из жаростойкого чугуна, из высококремнистого сплава ферроси-лида и отдельные технические условия на специальные марки. Стандарты на обычные и высококачественные отливки из серого чугуна регламентируют только механические свойства металла, но не содержат каких-либо ограничений по химическому составу. Это объясняется тем, что наряду с влиянием химического состава на механические свойства не меньшее влияние оказывают и другие факторы толщина стенок, характеристика формы, условия охлаждения, структура. При одном и том же химическом составе металла отливок из серого чугуна механические свойства выше у тонкостенных отливок, залитых в сырые или металлические формы и охлажденных с высокой скоростью, и, наоборот, механические свойства понижаются с увеличением толщины стенок при заливке в сухие песчаные формы и при медленном охлаждении. Влияние указанных факторов отражается на структуре металла, которая определяет свойства чугуна в отливках.  [c.109]

После деформации с обжатием 26—28% изменяются в основном микроискажения кристаллической решетки, размеры областей когерентного рассеяния мало изменяются во всем интервале температур деформации. Физическое уширение линии (220) изменяется в зависимости от температуры деформации так же, как величина микроискажений кристаллической решетки а-фазы. После прокатки углеродистых сталей с обжатием 26—28% отношение ширины линии (220) к ширине линии (ПО) укладывалось в пределах три—шесть, но для большинства температур прокатки, в том числе в интервале температур динамического деформационного старения, оно было ближе к шести. Согласно данным работы [519], это указывает на то, что уширение рентгеновских линий происходит преимущественно за счет микроискажений кристаллической решетки а-фазы и в меньшей мере — за счет малости блоков. В этих условиях микроискажения могут быть рассчитаны по истинному физическому уширению линий вполне достоверно [506]. Малый вклад блоков в уширение рентгеновских интерференционных линий после прокатки с обжатием 26—28% обусловлен, по-видимому, тем, что блоки, как известно, интенсивно дробятся при увеличении степени деформации до 10 15%, при дальнейшем увеличении степени деформации размеры их практически не изменяются [506, 520]. Количественную зависимость между характеристиками механических свойств и тонкой кристаллической структуры устанавливали на основании статистической обработки с определением критериев значимости полученных зависимостей по методике Браунли [521].  [c.278]

Разравнивание шликера на изделии после окунания основано на разрушении структуры шликера и придании ему подвижности путем различного вида движений изделия. Равномерное нанесение шликера слоем заданной толщины методом окунания возможно лишь при соответствии между способом нанесения, характеризуемым числом, частотой, амплитудой и траекторией возвратных движений (возвратно-вращательное, еозвратно-посту-пательное, качательное и т. п.), и структурно-механическими свойствами шликера, которые характеризуются предельным статическим напряжением сдвига 0с и структурной вязкостью 1]. Таким образом, для достижения поставленной цели можно поступать двояко либо подбирать характер возвратных движений к определенным характеристикам шликера, либо, наоборот, подбирать характеристики шликера в соответствии с характером возвратных движений. Например, задав характер возвратных движений, мы сможем получить покрытие хорошего качества при следующих соотношениях предельное статическое напряжение сдвига 0с Д0Л1ЖН0 быть настолько большим, чтобы при заданной толщине слоя шликера на вертикальных и наклонных стенках изделия не было стекания шликера под действием собственного веса, но в то же время настолько малым, чтобы напряжения, возникающие в шликере при данных возвратных движениях, были выше предельного статического напряжения сдвига структурная вязкость т] должна быть настолько низкой,  [c.148]

К описанию механического поведения непрерывной среды применимы все соотношения, рассмотренные в разделах 1.2.1—1.2.4. Вместе с тем реальные среды по-разному реагируют на одно и то же внешнее механическое воздействие. Эта реакция, или механическое поведение среды, определяется ее молекулярной структурой и состоянием при заданных внешних условиях. Обобщенные характеристики конкретных сред носят название уравнений состояния [16] ( onstitutive equations) [7] или определяющих уравнений входящие в них константы являются характеристиками механических свойств среды. Примерами простейших уравнений состояния идеализированных сред служат изотермические линейные законы деформирования упругих твердых тел (закон Гука) и вязких жидкостей (закон Ньютона).  [c.23]

Структурные изменения в сажепековых композициях соответственно отражаются на других характеристиках материала. С ростом содержания связующего наблюдается падение удельного сопротивления и повышение механических свойств, особенно после образования структуры сажевых агрегатов . При этом значительно возрастает модуль упругости, что свидетельствует о резком увеличении количества химических связей.  [c.73]



Смотреть страницы где упоминается термин Структура и характеристики механических свойств : [c.214]    [c.241]    [c.149]    [c.236]    [c.93]    [c.97]    [c.52]    [c.59]    [c.116]   
Смотреть главы в:

Трещиностойкость и механические свойства конструкционных материалов  -> Структура и характеристики механических свойств



ПОИСК



228 — Характеристики механических свойств

434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

Колмаков А. Г ВЗАИМОСВЯЗЬ МУЛЬТИФРАКТАЛЬНЫХ ХАРАКТЕРИСТИК СТРУКТУР СТАТИЧЕСКИХ ИЗЛОМОВ И МЕХАНИЧЕСКИХ СВОЙСТВ МОЛИБДЕНА

Механическая характеристика

Свойства с а-структурой

Характеристики структуры



© 2025 Mash-xxl.info Реклама на сайте