Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реальная структура металлов

В реальных структурах металл — полупроводник это соотношение не выполняется, т. к. в поверхности полупроводника или в тонкой диэлектрич. прослойке, часто возникающей между металлом и полупроводником, обычно есть локальные электронные состояния находящиеся в них электроны экранируют влияние металла так, что внутр. поле в полупроводнике определяется этими поверхностными состояниями и высота Ш. б. зависит от Ф менее резко, чем это может быть получено из приведённой выше ф-лы. Как правило, наибольшей высотой обладают Ш. б., получаемые нанесением на полупроводник и-типа плёнки Аи. На высоту Ш. б. оказывает также влияние сила электрич. изображения (см. Шоттки эффект).  [c.467]


ИДЕАЛЬНАЯ И РЕАЛЬНАЯ СТРУКТУРА МЕТАЛЛА  [c.36]

Эта разность потенциалов создается в приповерхностном слое полупроводника, в результате возникает барьер Шоттки высотой ф -ф = фд. В реальных структурах металл-полупроводник это соотношение не всегда строго выполняется, так как на поверхности полупроводника в тонкой диэлектрической прослойке, возникающей из-за технологических факторов между металлом и полупроводником, образуются локальные поверхностные состояния. Электроны, находящиеся на них, экранируют влияние металла так, что внутреннее электрическое поле в полупроводнике определяется этими поверхностными состояниями.  [c.167]

Переработан вопрос о кристаллическом строении металлов и в особенности об идеальной и реальной структуре металлов.  [c.5]

РЕАЛЬНАЯ СТРУКТУРА МЕТАЛЛОВ  [c.92]

Совмещение термообработки с пластической деформацией ускоряет фазовые превращения и повышает пластичность без существенного снижения прочности. Это обусловлено реальной структурой металлов, искажения решеток в котором (точечные дефекты, дислокации и др.) снижают его техническую прочность в сотни раз по сравнению с теоретической. Термопластическая обработка  [c.19]

В реальных структурах металл — ловые линии электрич. поля перпен-ПП это соотношение не выполняется, дикулярны ей. Поэтому эл-н с зарядом т. к. на поверхности ПП или в тонкой —е, находящийся на расстоянии х диэлектрич. прослойке, часто возни- от поверхности, взаимодействует спей кающей между металлом и ПП, обыч- так, как если бы он индуцировал в но есть локальные электронные состоя- металле на глубине — х своё электрич. ния находящиеся в них эл-ны экра- изображение , т. е. заряд Сила  [c.855]

Экспериментально наблюдаемые значения Гх/до для щелочных металлов изменяются от 2 до 6, т. е. значительно отличаются от расчетных. Такое расхождение связано с тем, что ионная модель металла слишком груба, чтобы можно было рассчитывать на хорошее согласие с опытом. Однако представление о структуре металла как об ионном остове, погруженном в электронный газ, компенсирующий силы отталкивания между ионами и связывающий их в кристалл, достаточно точно отражает реальную ситуацию.  [c.84]

Второй способ повышения реальной прочности металлов заключается в изменении структурного состояния материала при заданном постоянном уровне сил межатомных связей. Низкие значения прочности технических ЛОО металлов и сплавов объясняются неоднородностью структуры — наличием неравномерно распределенных несовершенств кристаллического строения (дислокаций, вакансий, чужеродных атомов) и границ зерен, а также металлургических дефектов (пор, химической неоднородности и т. д.). Это приводит к резкому снижению энергоемкости металла ( мех вследствие неоднородного характера поглощения энергии различными объемами металла, т. е. к уменьшению величин 1 5 и п [см. уравнение (10)].  [c.22]


Предлагаемые методы расчета адгезионных характеристик системы двух полубесконечных металлов, разделенных зазором, в большинстве случаев не противоречат один другому, взаимосвязаны и дополняют друг друга. Но они справедливы только для плоских границ, когда взаимодействие предполагается по всей зоне контакта, что не соответствует реальной структуре межфазной границы и заведомо приводит к завышенным значениям энергии и силы взаимодействия двух поверхностей, превышающей предел прочности металлов. При более корректном описании адгезии необходимо учитывать неровности и дислокационную структуру поверхностных слоев.  [c.5]

Наиболее известный метод приготовления металлических образцов — электрополировка — не пригоден для изучения покрытий по следующим причинам значительная анизотропия и структурная неоднородность покрытий приводят к избирательному травлению, предотвратить которое практически не удается многие покрытия не являются электропроводными поры и микротрещины, обычно имеющиеся в покрытиях, будут растравливаться, увеличиваясь в размерах и искажая реальную структуру покрытие и основной металл обладают отличающимися химическими свойствами, поэтому травление комбинированного образца (основной металл с покрытием) будет преимущественно развиваться на одном из участков или на границе раздела.  [c.177]

Олово относится к металлам, на которых в результате пластичности образуется довольно плотный деформированный слой. Поэтому очень редко сразу можно выявить реальную структуру. В большинстве случаев сначала пользуются обычными способами (чередованием полирования и травления) для устранения этого слоя. Для металлографического микроскопического исследования, особенно для цветного травления, эти операции обязательны.  [c.229]

Несовершенства (дефекты) строения реальных кристаллов металла. Описанная в предыдущем разделе кристаллическая решетка является идеальной. На основе физики твердого тела теоретически найдены механические характеристики, которые должны быть у кристаллов строго идеальной структуры. Сопоставление этих характеристик с обнаруживаемыми в опыте показывает значительное (в десятки и даже в сотни раз) превышение теоретическими значениями опытных. Последнее расхождение объясняется тем, что в реальных кристаллах всегда имеются отклонения от идеального характера атомной решетки, называемые несовершенствами или дефектами строения кристаллов ). Известны различные типы дефектов классификация их дана в табл. 4.3.  [c.233]

Таким образом, прочность реальных поликристаллических металлов определяется двумя факторами межатомными силами связи и структурой металла в широком ее понимании.  [c.39]

Металл, деформируемый в холодном состоянии, упрочняется. Характер кривых упрочения некоторых металлов показан на рис. 7. В процессе деформирования металла в холодном состоянии возникают остаточные внутренние напряжения, причины возникновения которых связаны с кристаллической структурой металлов. Так как в реальных условиях кристаллы различно ориентированы относительно деформирующей нагрузки, то в материале детали уже в зоне пластического деформирования наряду с пластическими деформациями действуют и упру-464  [c.464]

Как мы уже упоминали, исследование температурной и структурной зависимости плотности распределения времени релаксации/(Я ) требует проведения тщательного, широкого и достаточно громоздкого эксперимента. К тому же, как правило, специализированные установки для проведения опытов на релаксацию работают в ограниченном диапазоне температур, который не охватывает реальных температур горячей деформации многих сплавов. Однако, даже выполнив серии таких экспериментов для некоторой выборки образцов, полученные результаты нельзя зачастую обобщить для других образцов, обладающих несколько иным химическим составом или структурой. Это связано с тем, что скорость или время релаксационных процессов определяются при постоянной температуре именно структурой металла.  [c.166]

Часто для описания структур металлов прибегают к так называемой модели твердых шаров. Она же — модель жестких сфер, бильярдных шаров, теннисных мячей и т. д. Под пестрыми названиями скрывается простая суть атомы металла считают твердыми шарами, которые следует уложить как можно плотнее. Тогда мы должны прийти (если, конечно, гипотеза верна) к кристаллическим решеткам реальных металлов.  [c.89]


Поликристаллическое состояние. Структура применяемых в технике металлов обычно представляет собой большое количество кристаллических зерен (фиг. 7, а), т. е. в реальных условиях металл — тело поликристаллическое.  [c.19]

В настоящее время установлено, что реальные кристаллы металлов, в отличие от идеальных, обладают рядом структурных несовершенств или дефектов, т. е. отклонений от правильного геометрического строения. Оказалось, что многие очень важные механические и физические свойства и процессы, происходящие в структуре металлов, тесно связаны с несовершенствами (дефектами) строения их кристаллов, которые обычно разделяют на три группы — точечные, линейные и поверхностные.  [c.20]

В силу сказанного реальной представляется возможность установления связи между составом, фрактальной структурой и свойствами материала [И, 12]. Это ставит задачу развития фрактального материаловедения, учитывающего самоорганизацию диссипативных структур, отражающую способность системы приспосабливаться к внешним условиям воздействия путем реализации обратных связей. Согласно В.Е. Панину и др. [13, 14], в электронной структуре металла и сплава уже заложен генетический код, осуществляющий приспособление системы к внешнему воздействию. Задача управления свойствами сплавов и получение материалов с заданными свойствами сводится к отысканию способов целенаправленного усиления обратных связей. Указанная проблема сама по себе достаточно сложна и требует объединения физиков, химиков, механиков, материаловедов и технологов.  [c.8]

В СССР переведены книги, в которых рассматриваются теоретические и экспериментальные вопросы оценки качества материала с позиций механики разрушения 1—5]. Однако экспериментальные методики в них даются в законченном виде (как стандарт или проект стандарта), физическая картина изменения напряжения и деформаций у трещины при нагружении в зависимости от геометрии образца и длины трещины не рассматривается, а теоретические разработки излагаются, как правило, без обсуждения реальных процессов, протекающих в структуре металла перед надрезом или трещиной.  [c.5]

Исходя из термодинамических и электрохимических соображений вовсе не обязательно возможность коррозии того или иного сплава связывать с наличием на поверхности микроэлементов. Если потенциал металла достаточен для того, чтобы протекала анодная реакция ионизации, растворение металла будет наблюдаться вне зависимости от того, имеются на поверхности микроэлементы или нет. Поэтому теоретически следует признать возможность растворения и самых чистейших металлов. Наблюдения, однако, показывают, что когда мы имеем дело с реальными сплавами, положение резко меняется в силу ряда причин, связанных со структурой металла и неоднородностью электролита, условиями диффузии и конвекции электролитов к поверхности металла, последняя относительно быстро дифференцируется на участки, где электрохимические реакции протекают с различной скоростью. В предельном случае, как это, например, наблюдается при локальной коррозии, анодная реакция перестает протекать на значительной части поверхности и сосредоточивается на отдельных участках, а катодные реакции сосредоточиваются на остальной части поверхности.  [c.11]

Из сопоставления рис. 4.24 и табл. 4.8 следует, что вариация химического состава стали и условий сварки, обусловливая изменение структуры металла, соответственно вызывает изменение ее склонности к тепловой хрупкости. По существу, степень охрупчивания металла - плавочная, а не марочная характеристика стали. В реальных условиях изготовление и ремонт конструкций по режимам, вызывающим появление в сварном соединении закалочных структур, приведут к росту степени охрупчивания сталей в условиях длительного термического воздействия.  [c.160]

За редкими исключениями, кристаллы и кристаллиты, образующие поликристаллы, обладают различными типами структурных дефектов. Знание типов, способов образования, а также влияния структурных дефектов на различные процессы и свойства твердых тел совершенно необходимо для современных специалистов по физике твердого тела. Понятие реальный кристалл чрезвычайно широко. При малой концентрации структурных несовершенств реальный кристалл в пределе переходит в идеальный, приобретая качественно новые свойства. При большом содержании дефектов реальный кристалл в пределе приобретает аморфную структуру и свойства, характерные для аморфного состояния. Воздействие на реальную структуру твердых тел является одним из способов управления их свойствами. Например, в зависимости от концентрации точечных дефектов коэффициент диффузии в металлах может меняться на семь порядков, в таком же диапазоне меняется электропроводность полупроводника. Техническая прочность твердых тел отличается от теоретической (предельной) на три-четыре порядка. Исключив возможность влияния несовершенств, можно реализовать теоретическую прочность. Каждому понятно, насколько это важно для практических целей.  [c.6]

Благодаря контактным потенциалам две поверхности различных твердых тел приобретают противоположные заряды только за счет соприкосновения. Контактные разности потенциалов могут возникать также между одинаковыми телами (рис. 16.4), если соприкасающиеся поверхности благодаря адсорбционным пленкам или влиянию дефектов реальной структуры обладают различными работами выхода электрона. Образование зарядов происходит путем перехода свободных электронов у металлов и полупроводников за счет обмена зарядами между поверхностями в разных состояниях или благодаря переходам слабо связанных ионов у изоляторов. При переходе зарядов создается дипольный слой, который при отделении поверхностей разрывается так, что поверхности остаются заряженными. Величина заряда пропорциональна площади контакта, следовательно, она определяется степенью деформации. Плотность заряда зависит от контактного потенциала и действительной площади контакта.  [c.441]


Во-вторых, вследствие температурных условий, напряжений и пр. у реальных кристаллов металлов при исследовании их структуры при  [c.30]

Эта ионная форма образует с нонами металла (такими, как медь) нерастворимые соли, и возможно, что защитное покрытие состоит, главным образом, из нерастворимой соли меди с МБТ. Однако более реальная структура защитного покрытия должна соответствовать тому факту, что МБТ имеет не только ионизируемую сульфогруппу, но также входящие в кольцо серу и азот, из которых каждый способен образовывать координационные связи с металлом или ионом металла. Если поверхность меди частично  [c.125]

Различают однофазную структуру, состоящую из частиц или зерен, одного компонента (феррит, аустенит), и матричную, образованную зернами матрицы и частицами избыточных фаз или структурных составляющих (аустенит и карбиды, перлит и избыточный цементит и т. д.), находящихся в различной степени взаимного контакта — от полного разобщения (отдельные случайные включения) до полной связанности (сплошные прослойки остаточного аустенита). С точки зрения способа размещения элементов структуры в пространстве она может быть изотропной и ориентированной. Реальная структура металлов и сплавов — полидисперс-ная немономорфная (т. е. состоящая из частиц разного размера и различной формы) система.  [c.73]

Однако выражения (2.10), (2.11) могут бьггь использованы только для качественной оценки явления вследствие того, что реальная структура пористых металлов существенно отличается от использованной капиллярной модели. Это приводит к тому, что режим достижения скорости звука на выходе из матрицы наступает постепенно и определяется не единичным давлением на выходе, а диапазоном давлений [ 8].  [c.24]

Рассмотренные до сих нор теории пластичности основывались на гипотезах формального характера реальная структура поли-кристаллического материала и хорошо известная картина пластического деформирования кристаллических зерен при этом совершенно не принимались во внимание. Такой подход имеет свои преимуп] ества и недостатки. С одной стороны, обилие законы пластичности, сформулированные для нроизвольного тела безотносительно к его физической природе, позволяют охватить единообразным способом широкий круг явлений — пластичность металлов, предельное равновесие грунтов, хрупкое разрушение горных пород и бетона и так далее. Такая общность чрезвычайно подкупает действительно, экспериментатор с удивлением обнаруживает, что макроскопическое поведение тел самой разнообразной физической природы оказывается поразительным образом сходным. Оказывается, что это поведение егце более поразительным образом может быть приблизительно хорошо описано при помощи уравнений, полученных из некоторых априорных гипотез достаточно формального характера. Но при более детальном изучении опытных данных оказывается, что при внешнем глобальном сходстве обнаруживаются и различия в поведении разных материалов. Эти различия связаны с тем, что микромеханизмы не только неунругой, но даже упругой деформации не одинаковы. Поэтому естественно стремление к тому, чтобы положить в основу теории пластичности некоторые физические представления о протекании пластической деформации. Нужно признать, что мы еш е далеки от возможности построения макроскопической теории, основанной на анализе и описании процессов, происходящих на микроуровне. Теория скольжения Батдорфа и Будянского, которая будет схематически изложена ниже, отнюдь не может быть названа физической теорией. Однако положенные в ее основу гипотезы в определенной мере отражают процессы, происходящие внутри отдельных кристаллических зерен, хотя и не воспроизводят их точным и полным образом. Пластическая деформация единичного кристалла происходит за счет сдвига в определенной кристаллографической плоскости в определенном нанравлении. Совокупность плоскости скольжения и направления скольжения в этой плоскости называется системой скольжения. Система скольжения задается парой ортогональных еди-  [c.558]

Металлографии циркония и его сплавов посвяш,ена работа Робертсона [22]. Несмотря на повышенную твердость, этот металл при шлифовании, а также полировании очень склонен к смазыванию . Поэтому каждую отдельную ступень обработки (шлифование, полирование) нужно проводить дольше, чем обычно, чтобы полностью устранить деформированный слой. Эти меры, особенно для материала, подвергнутого неполному отжигу, нужно соблюдать чрезвычайно точно, так как часто при травлении выявляется не реальная структура, а слой после обработки. Этот слой может быть толш иной до 0,5 мм и даже больше. В качестве реактивов хорошо применять смеси 20 мл плавиковой и 10 мл азотной кислот в 60 мл глицерина или воде, продолжительность травления составляет 3—5 с. Другие реактивы, такие как раствор 10 мл НС1 в 30 мл спирта и 25 мл надхлорной кислоты в 450 мл спирта и 70 мл HjO, применяют при электролитических способах травления. Робертсон [22], кроме фотографий структур чистого циркония, приводит также фотографии структур сплавов циркония с ниобием, танталом, кремнием, бором и железом.  [c.297]

Роль электронов в металлах как фактора, определяющего их прочность и пластичность, подчеркивалась Я. И. Френкелем еще в ранних работах [1] на основе пористой электронной модели. Современные представления о реальной прочности металлов, учитывающие, с одной стороны, кооперативный характер процессов перемещения атомов при деформации, а с другой — локальный характер разрушения, не отрицают роли электронного фактора. Так, справедливо считается, что наблюдаемые различия прочностных характеристик кристаллов определяются их электронной структурой, а роль дефектов упаковки в механизме деформации и разрушения металлов и качественная связь энергии дефектов упаковки с характеристиками электронной структуры [2] общепринятые. Для дальнейшего развития этих представлений стала очевидной необходимость установления закономерностей взаимосвязи процессов деформации и разрушения с электронными свойствами самих дефектов, ответственных за прочностные свойства металлов [.3]. Со времени открытия явления взаимодействия позитронов с дефектами кристаллической решетки [4] стало понятным, что метод позитронной аннигиляции является уникальным для получения информации об электронной структуре дефектов [5]. В основе этой возможности лежит тот факт, что при наличии в кристал.те дефектов с концентрацией 10 все термализованные позитроны захватываются ими и аннигиляция с электронами в дефектах дает информацию об их электронной структуре. Если концентрация дефектов недостаточна, то в позитронную аннигиляцию будут вносить вклад как совершенные, так и дефектные области кристалла. Следовательно, использование метода электронно-позитронной аннигиляции для анализа структурного состояния в области дефектов, образующих-  [c.139]

Конфигурационная энтропия, определяемая выражением (1.26), показывает отличие значения энтропии реальной системы от равновесного значения St в соответствии с выражением (1.11). Это отличие вызвано присутствием в металле внутренних напряжений (1.25), распределение которых в системе может быть описано функцией Да ). Напряжения, создаваемые дефектами кристаллического строения, определяют структуру металла, поэтому мы вправе ввести новый термин - структурная энтропия А5стр - и считать, что функция, задаваемая выражением  [c.31]


Согласно А. Н. Фрумкину, при установлении механизма выделения водорода необходимо учитывать реальную структуру двойного электрического слоя на границе металл — раствор. Влияние структуры двойного слоя на кинетику выделения водорода сводится к учету изменения энергии активации и различий в концентрации разряжающихся ионов гидроксония вблизи поверхности металла и в объеме [20, 21]. Так как ионы НаО+ вступают в реакцию будучи на расстоянии ионного радиуса от поверхности металла, то энергия активации этой реакции определяется не полным падением потенциала ф, а значением, равным ф—ijii,  [c.13]

Дальнейшие конструктивно-технологические разработки привели к созданию планарно-эпитаксиального кремниевого барьера Шоттки [55] с трехслойным металлическим контактом, например Au-Ti-Pt (рис. 2.26, г), площадью < 1 см , на прямые токи > 10 А при обратных напряжениях > 50 В, с обратными токами порядка = 20 10 А. Была разработана методика расчета барьера Шоттки с металлическим электродом в форме эллипсоида вращения или эллиптического цилиндра (рис. 2.26, д) утопленного вглубь полупроводника на глубину А = 0,05 мкм, в предельном же случае этот электрод сводится к металлическому диску либо металлической полоске, расположенным по поверхности полупроюдни-ка, т.е. это говорит о плоской природе контакта металл-полупроводник и не объясняет физической природы возникновения краевого эффекта и не содержит реальных структур, лишенных краевого эффекта. Однако авторы [55] верно отметили факт, что на краях металлического листа контакта металл—полупроводник я-типа (в виде плоского диска или плоского прямоугольного листа) формируется поверхностная плотность заряда очень большой величины, создающая краевое электрическое поле напряженности также большой величины, в пределе стремящейся к бесконечности (Е сю).  [c.170]

Все реальные стержни имеют определенную величину начального искривления, т. е. искривление в ненагружевном состоянии. Тщательно изготовленные балки, например стержни, вырезаемые из более длинных стержней и подвергнутые операции правки, будут иметь меньшее искривление, чем не столь тщательно изготовленные. Даже если на внешних поверхностях балок не было заметных искривлений, там, однако, всегда присутствовали бы эквивалентные искривления (отклонение от прямой линии упругой оси , действительной оси балки), обусловленные упругой неоднородностью и анизотропией материала (например, из-за по-ликристаллической структуры металлов, наличия включений, полостей и т. д.)  [c.77]

Причины возникновения электрохимической гетерогенности могут быть самыми различными. По современным воззрениям электрохимическая гетерогенность поверхности металла может быть вызвана не только микронеоднородностью структуры металла как, например, различием в составе или ориентации отдельных кристаллов и наличием границ зерен или инородных включений [7,13]. Даже субмикронеоднородность металла как, например, местные несовершенства кристаллической решетки вследствие дислокаций или включения других атомов в решетку основного металла, а также различное энергетическое состояние атомов, зависящее от их полол<ения в решетке на поверхности, следует рассматривать как причины, вызывающие появление электрохимической гетерогенности металла. В предположении, что электрохимическая гетерогенность сплава существует даже на атомном уровне, нет необоснованных допущений, как это иногда высказывается, так как вполне очевидно, что элементарные анодные и катодные процессы относятся к отдельным дискретным атомам кристаллической решетки. Признание того, что электрохимическое растворение металла идет в виде двух независимых, но сопряженных процессов (анодного и катодного), влечет за собой и признание их дифференции в пространстве или во времени. Накопление на поверхности атомов более устойчивого компонента при растворении твердых металлических растворов может служить самым прямым доказательством того, что анодный процесс вполне реально (а не условно) относится к отдельным атомам более активного компонента твердого раствора.  [c.23]

Преимущество испытаний в заводских условиях по сравнению с лабораторными испытаниями состоит в том, что они позволяют более полно воспроизвести влияние многочисленных факторов, воздействующих на коррозию металлов в реальных условиях. К числу таких факторов можно отнести изменение в производственном процессе концентрации различных примесей и изменения физико-химических свойств среды, вязкости, происходящие при упаривании, перегонке, полимеризации, сульфировании и других производственных процессах. К ним также относятся [1] градиенты температуры, механические напряжения в швах и изменение структуры металла в пришовной зоне, ско рость протекания жидкостей или газов и т. д. В заводской аппаратуре предоставляется возможность испытать влияние на коррозию металлов недостаточно изученных веществ, постоян-  [c.225]

Вторую партию лепаток подвергали закалке после штамповки с 870 °С (выдержка 30 мин) в воде (18—20 °С), причем твердость их была на три-четыре единицы (34—35 ННСэ) ниже, чем у отожженных (37,5—38,5 НКСэ). Старение после фрезерования штамповок проводили при 530 °С в течение 6 ч для одной части лопаток и при 600 °С в течение 6 ч — для другой. В обоих случаях лопатки после старения охлаждали на воздухе. В первом случае твердость после старения повысилась до 44,5— 45,5 НКСэ, во втором — до 40,5—41,5 ННСэ. Оба режима значительно превосходят реальные температурные условия работы лопаток и, следовательно, определяют термостабильность структуры металла лопаток в эксплуатации.  [c.117]

Однако формула Лихтенеккера также дает удовлетворительное соответствие с опытом лишь при незначительном различии в свойствах исходных компонент. Например, в системах металл — неметалл теплопроводность и электропроводность для разных компонент может различаться на несколько порядков. При этом расчет эффективной теплопроводности по формуле (6-2) может дать результаты, отличающиеся от опытных значений на порядок и больше. В 1-9 было показано, что выбор конкретных формул для расчета тепло- и электропроводности любой механической смеси зависит от типа ее реальной структуры, т. е. от способа распределения компонент в объеме смеси, характера их контактирования и степени геометрического равноправия. Компоненты сплава-смеси могут образовывать как крайние типы структур (замкнутые включения или взаимопроникающие решетки), так и их различные сочетания. Конкретный тип структуры сплава-смеси может быть выявлен при анализе микрошлифов. Если одна из компонент образует замкнутые включения, распределенные равномерно в толще связующего веще-  [c.167]

Полупроводники, Реальная кристаллическая структура металлов. Рассмотрим вкратце очень важное для ряда технических назначений свойство слабой электронной проводимости, которой обладают некоторые вещества— полупроводники. Одним из ее видов является собственная слабая проводимость, которой обладает при нагрева НИИ элемент полуметаллической природы — германий.  [c.38]


Смотреть страницы где упоминается термин Реальная структура металлов : [c.195]    [c.69]    [c.29]    [c.31]    [c.23]    [c.8]    [c.6]    [c.24]   
Смотреть главы в:

Введение в физическое металловедение  -> Реальная структура металлов



ПОИСК



Реальные структуры

Реальный газ



© 2025 Mash-xxl.info Реклама на сайте