Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение средней скорости в турбулентном пограничном слое

Рис. 7-5. Распределение средней скорости в турбулентном пограничном слое вблизи точки отрыва по [Л. 352]. Рис. 7-5. <a href="/info/614030">Распределение средней скорости</a> в <a href="/info/19796">турбулентном пограничном слое</a> вблизи точки отрыва по [Л. 352].

РАСПРЕДЕЛЕНИЕ СРЕДНЕЙ СКОРОСТИ В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ  [c.225]

Рис. 10-8. Распределение средней скорости в турбулентном пограничном слое вблизи отрыва по данным [Л. 252]. Рис. 10-8. <a href="/info/614030">Распределение средней скорости</a> в <a href="/info/19796">турбулентном пограничном слое</a> вблизи отрыва по данным [Л. 252].
Область перехода или точка перехода характеризуется возникновением в пограничном слое интенсивных пульсаций скорости, давления, плотности (в сжимаемых средах) и т. п. Распределения скоростей по сечению в ламинарном и в турбулентном пограничных слоях, вообще говоря, резко отличаются друг от друга. Так же как и при турбулентных движениях в трубах, в турбулентном пограничном слое происходит интенсивное перемешивание макроскопических частиц жидкости в поперечном направлении, за счет этого в турбулентном пограничном слое происходит выравнивание средних скоростей. Вместе с этим прилипание на обтекаемых стенках приводит к появлению более резких градиентов скоростей вблизи стенок, что вызывает резкое увеличение поверхностных сил трения и соответственно сопротивления трения.  [c.265]

При обсуждении физического смысла закона стенки важно отметить, что это соотношение само по себе не способно описать закон трения, связывающий касательное напряжение на стенке с другими параметрами потока, особенно чй, q а х. Закон стенки должен собственно рассматриваться как искусственный прием, позволяющий описать поток с турбулентным касательным напряжением, причем особо оговаривается, что на стенке скорость равна нулю, а трение подчиняется ньютоновскому соотношению. В случае ламинарного потока тот же искусственный прием позволяет описать полное поле касательного напряжения и определить профиль скорости, распределение количества движения и величину касательного напряжения на стенке. С другой стороны, в турбулентном пограничном слое поверхностное трение при больших числах Рейнольдса обычно рассчитывается из потери количества движения, т. е. на основании профиля средних скоростей, в котором закон стенки не проявляется в явном виде. В свою очередь распределение касательного напряжения на стенке устанавливает характер средних линий тока в области потока, где закон стенки справедлив. В этой области характер линий тока не зависит непосредственно от толщины области возмущенного потока с крупномасштабной турбулентностью, но косвенно зависит через влияние этой толщины на  [c.146]


На основе уравнения (1) были сделаны попытки рассмотреть случаи турбулентного течения, но всякий раз требовалось по необходимости какое-либо предположение о распределении средней скорости в пограничном слое или другие эквивалентные допущения. Принимаемая обычно формула  [c.871]

Распределение средней скорости на некотором расстоянии от стенки. Плодотворность гипотезы о подобии эпюр скоростей в ламинарных пограничных слоях указывает на желательность соответствующей гипотезы для турбулентных потоков. Теория  [c.321]

В [Л. 252] получено уравнение для распределения средней скорости в полностью развитой турбулентной части равновесного пограничного слоя. Использовано уравнение сохранения турбулентной энергии  [c.338]

Характер распределения скорости ло сечению пограничного слоя зависит от того, будет ли он ламинарным или турбулентным. При этом вследствие поперечного перемешивания частиц, а также их соударений указанное распределение скорости, точнее говоря, ее средней по времени величины, оказывается при турбулентном течении значительно более равномерным, чем при ламинарном (см. рис. 1.1.4). Из распределения скоростей вблизи поверхности обтекаемого тела можно также сделать вывод о большем напряжении Трения в турбулентном пограничном слое, определяемом повышенным значением градиента скорости.  [c.26]

Теоретическое исследование и расчет турбулентного пограничного слоя, так же как и расчет турбулентных движений жидкостей в трубах, основаны на эмпирических данных о законах распределения средних скоростей и других характеристик и на специальных интегральных соотношениях, устанавливаемых с помощью различных законов сохранения.  [c.265]

Для решения аналогичной задачи в случае турбулентного движения следует ввести в расчет вместо вязкости ц коэффициент турбулентного перемешивания А [ 4, п. е) гл. III]. Так как этот коэффициент во много раз больше, чем /х и приблизительно пропорционален скорости ветра, то пограничный слой получается значительно толще, чем при ламинарном движении, причем тем более толстым, чем больше скорость ветра. Кроме того, поскольку величина коэффициента А не постоянна по высоте z, для распределения скорости в пространство получаются иные формулы, чем при ламинарном движении. В частности, наибольший градиент скорости получается, как вообще всегда при турбулентных течениях, вблизи поверхности земли. Поэтому средняя скорость в пограничном слое больше, чем при ламинарном движении, что несколько сглаживает разность между кориолисовыми силами вблизи поверхности земли и на высоте этим и объясняется, что при турбулентном движении отклонение направления ветра в зоне трения от направления высотного ветра меньше, чем при ламинарном движении. Проекция годографа скоростей на горизонтальную плоскость изображена на рис. 290.  [c.473]

Современный уровень наших знаний турбулентного течения жидкостей не позволяет аналитически определять характеристики этих течений. Это объясняется тем, что неизвестна связь рейнольдсовых напряжений с распределением средних во времени значений скорости. Поэтому задача решается полуэмпирическими методами. Такие методы разработаны в большом количестве они позволяют более или менее удовлетворительно рассчитывать турбулентный пограничный слой с произвольным распределением скорости внешнего потока в направлении течения.  [c.352]

Все измеренные распределения давлений сравнивались с соответствующими расчетами, выполненными в работе [5.71] методом конечных площадей. Распределения давлений измерялись в различных сечениях по высоте рабочей лопатки, вплоть до сечений, отстоящих от корневого и периферийного сечений на 5% высоты лопатки. При расчетных углах атаки согласие теории с экспериментом получилось отличное почти во всех сечениях, за исключением крайних (расположенных по соседству с корневым и периферийным сечениями), где наблюдались небольшие расхождения. Распределения давлений в среднем сечении были получены во всем диапазоне режимов работы компрессора. Из рис. 10.3 видно, что при близких к расчетным условиях течения согласие результатов расчетов и экспериментов отличное, но за пределами расчетного диапазона углов атаки от — 13,0° до —2,5 (ф = 0,95—0,65) расхождение становится неприемлемым. Характер расхождения близок тому, который отмечался в работе [3.5]. При очень больших отрицательных углах атаки расчет предсказывал резкое торможение потока на корытце лопатки в области входной кромки, а на практике его не наблюдалось. На корытце профиля происходили отрывы потока, что приводило к расхождениям между расчетным и экспериментальным распределениями давления на этой поверхности. Происходящее в результате отрывов сужение потока в межлопаточном канале приводило к более высоким скоростям потока на спинке лопатки, чем этого следовало ожидать по расчету. При больших положительных углах атаки происходил отрыв турбулентного пограничного слоя на спинке лопатки в районе среднего сечения. Эти причины вызывали расхождение  [c.301]


Выше указывалось (рис. 13-20, 13-21), что характер распределения скорости и температуры в пограничном слое при кипении является сходным с соответствующими профилями в пограничном слое при свободной конвекции однофазной жидкости. Поэтому теплоотдачу при пленочном кипении можно представить формой зависимости, которая применяется при конвекции однофазной жидкости. При турбулентном движении паровой пленки средняя теплоотдача описывается зависимостью [Л. 99]  [c.321]

Выше рассматривалась лишь средняя скорость турбулентных течений вдоль шероховатой стенки. Легко понять, однако, что соображения, приведшие выше к выводу о том, что значение коэффициента А в формуле (6.22а) должно быть одним и тем же для развитых турбулентных течений как вдоль гладкой, так и вдоль шероховатой стенки, могут быть приложены и к очень многим безразмерным характеристикам турбулентных пульсаций скорости. Рассмотрим область турбулентного течения вдоль стенки, покрытой однородной шероховатостью (для определенности мы будем считать эту стенку динамически вполне шероховатой), расположенную выше примыкающего к стенке так называемого подслоя шероховатости, в пределах которого размеры, формы и распределение по плоскости отдельных элементов шероховатости (т. е. неровностей) еще непосредственно влияют на течение (толщина этого слоя обычно в 5—10 раз превосходит среднюю высоту Но выступов стенки, причем она зависит как от формы и распределения этих выступов, так и от того, какие характеристики течения исследуются и какая при этом требуется степень точности). Допустим, кроме того, что речь идет о группе точек Х1 = = (хи у и 2 1), Х2= ( 2, У2, гг),. .., Хп= (хп, Уп, гп), такой, что значение всех координат г,-, /=1,. .., /г, здесь намного меньше типичного вертикального масштаба L рассматриваемого течения (например, радиуса трубы, полуширины канала или толщины пограничного слоя) и что расстояния между любыми двумя из точек х,-, /=1,. .., /г, также намного меньше, чем Ь, но значительно превосходят масштаб (где г+ = ги 1у, г = у1и, а г = т п (ги. ..  [c.258]

Положительное влияние локального нагрева на затягивание ламинарно-турбулентного перехода пограничного слоя было получено снижением возмущающего воздействия распределенной шероховатости рабочей поверхности в окрестности передней кромки пластины длиной 1.25 м. Дополнительная шероховатость в виде дискретных элементов диаметром порядка 1 мм и высотой 0.1 мм возникала при нагреве в результате плавления термоиндикаторной краски, нанесенной на носовую часть в форме трех продольных полос с целью измерения распределения температуры вдоль средней части пластины. На фиг. 5, а приведены результаты экспериментов для холодного режима, показывающие зависимость характеристик области ламинарно-турбулентного перехода от скорости для трех сечений пограничного слоя л = 0.33 0,57  [c.38]

В турбулентных пограничных слоях средняя скорость увеличивается до больших значений внутри подслоя. Это подтверждается графиком на рис. 10-9, где распределение касательного напряжения вблизи стенки вычислено в предположении с/ = = onst. Видно, что изменение касательного напряжения зависит от величины коэффициента трения С/ и обычно много меньше, чем это можно было бы ожидать, принимая во внимание только условие dtldy=dpldx.  [c.292]

Чем определяется возникновение турбулентности, мы скажем ниже, в ИЗ, а здесь отметим, что распределение средней скорости при турбулентном потоке по диаметру трубы совсем иное (рис. 308), отлвдное от того, что мы видели при ламинарном движении (см. рис. 305). При завихренном движении средняя скорость почти по всему сечению трубы остается почти постоянной и только вблизи стенок быстро спадает до нуля, пограничный слой вблизи стенок занимает сравнительно небольшую долю потока, а в центре поле скоростей почти однородно и более похоже на то, которое должно быть в трубе при отсутствии вязкости жидкости. При слоистом движении (см. рис. 305) нет четкого пограничного слоя, во всех частях трубы поле скоростей изменяется из-за сил вязкости так же, как вблизи стенок, можно даже сказать, что в этом случае пограничный слой занимает весь поток жидкости.  [c.381]

Г. Б. Шубауэр и В. Г. Спангенберг [Л. 210] измеряли распределения средней скорости в нескольких турбулентных пограничных слоях в плоском деревянном диффузоре. Измерения распределения скорости, включая область, близкую к поверхности диффузора, а также статического давления в направлении течения, выполнены  [c.448]

Различают два вида пограничного слоя 1) л а-м и н а р и ы й пограничный слой и 2) турбулентный пограничный слой. При ла-минарном пограничном слое частицы, находящиеся внутри него, двигаются параллельно новерхности при турбулентном пограничном слое имеет место дополнительное поперечное движение частиц, сопровождающееся переносом импульсов. При турбулентном пограничном слое можно говорить лишь о распределении средних скоростей. На фиг. 12, А приведено распределение скоростей внутри ламинарного пограничного слоя, а на фиг. 12,В— турбулентного пограничного слоя. При турбулентном пограничном слое в непосредственной близости к поверхности имеется тонкий ламинарный подслой. Если поместить начало координат в носике пластинки, а ось X направить вдоль нее, то высота ламинарного пограничного слоя м. б. найдена по ф-ле Влавиуса  [c.554]

Подстановка выражений (7-25) о уравнения пограничного слоя. для осре.дненного движения приводит к обыкновенному. дифферен-пмльному уравнению с решениями, удовлетворяющими условиям постоянства потока количества движения только при о х—хо)Ч-и ио х—Хо) /2 [это строго выполняется при (Н1—н)<СЦ1]. В авто-.модельном слое этой категории структура турбулентной вязкости и распределение средней скорости развивается самопроизвольно на значительном расстоянии вверх по течению члены в уравнениях движения и энергии, выражающие конвективный перенос осреднен-ным движением соответствующих свойств, имеют тот же порядок величины, что и члены, выражающие локальные эффекты, такие как градиент касательного напряжения или величина порождения энергии турбулентных пульсаций.  [c.192]


Теория турбулентно-волнового движения пленки вязкой жидкости, взаимодействующей на поверхности раздела фаз с потоком газа, еще не разработана. В этих условиях для расчета средней толщины пристенной жидкостной пленки обычно используют теоретический аппарат однофазного турбулентного пограничного слоя [9, 73, 74, 168]. Начало этому направлению положила работа Даклера [168], который предположил, что пленка жидкости, взаимодействующая с газовым потоком, ведет себя аналогично пристенному слою той же толщины на однофазном потоке, и использовал для расчета распределения профиля скоростей в пленке универсальные координаты =--f у ) и трехслойную схему Кармана [191]. Такой подход позволил установить следующую связь между толщиной и числом Рейнольдса для турбулентного режима течения пленки  [c.209]

Ламинарный нограначнын слой внутри турбулентного пограничного слоя. Когда мы говорили о распределении скоростей или о скорости в какой-нибудь точке турбулентного течения, мы подразумевали, как на это было указано на стр. 55, -среднее значение скорости в рассматриваемой точке. Действительная скорость, которая в каждый момент времени различна и колеблется около указанного среднего значения, получается сложением этого среднего (во времени) значения и колебания скорости. Эти колебания составляют примерно гЬ 5 ,0 средней скорости. Однако, если рассматривать явления все в большей и большей близости от стенки, то колебания скорости вследствие близости стснки будут очень быстро убывать. Правда, колебания скорости и будут все же значительны и вблизи стенки, в процентном отношении, южeт быть, даже тем больше, чем ближе к стенке. Но нормальная составляющая скорости убывает во всяком случае очень быстро, и непосредственно у стенки для среднего во времени значения получается опять соотношение  [c.98]

В это уравнение импульсов из опытных данных подставляются однопараметрическое семейство распределений средних турбулентных скоростей, а также эмпирический закон касательных напряжений на стенке. Получаемые отсюда расчетные формулы профилей скорости в пограничном турбулентном слое обладают достаточной точностью. В основу таких расчетов следует положить наиболее точные яа сегодня опытные данные Г. Людвига и В. Тилмана [47J. Этому вопросу посвящены в сборнике работы ряда других авторов.  [c.16]

Экспериментальное изучение влияния положительного градиента давления на турбулентность в канале и пограничном слое крайне осложнено тем, что поток подчас находится в неравновесном состоянии. Как указывает Дёнх [1], получение простейших равновесных течений возможно лишь в таких каналах, в которых распределения скоростей в каждом сечении по потоку подобны. Изучение таких равновесных течений способствует решению многих практических задач, в которых состояние потока изменяется от параллельного течения (нулевой градиент давления) до точки отрыва. Полное подобие распределений скоростей по потоку достигается только тогда, когда число Рейнольдса и соответствующий безразмерный градиент давления не зависят от х Для вполне развитых потоков в слабо расходяш емся канале, где градиент давления обусловливается изменением сечения канала, постоянство R достигается использованием плоского диффузора. Исследованием течений в плоских расширяющихся каналах занимались в свое время Дёнх [1] и Никурадзе [2], которые измеряли лишь профили средних скоростей. К тому же сомнительно, что в этих работах поток был равновесным. Клаузер [3] исследовал равновесные пограничные слои с положительным градиентом давления. Как и для конического диффузора, в этом случае имело место изменение числа Рейнольдса [21] по потоку.  [c.373]

Аэродинамические и акустические параметры, характеризующие начальные условия истечения дозвуковых затопленных и спут-ных турбулентных струй. В общем случае начальные условия истечения характеризуются распределением в выходном сечении сопла средней скорости, температуры, энергии и масштаба турбулентности. Применительно к затопленным струям с почти равномерным распределением перечисленных параметров по сечению (вне пограничного слоя на срезе сопла) для характеристики начальных условий истечения используются следующие параметры Re = uadju - число Рейнольдса, Мо = щ/а - число Маха, То/Тоо - степень неизотермичности, = и /uq - степень турбулентности в центре выходного сечения сопла, <5q и бо и Я = 6 /во - толщина вытеснения, толщина потери импульса и формпараметр пограничного слоя в выходном сечении сопла. К начальным условиям истечения относится также режим течения в пограничном слое в выходном сечении сопла (ламинарный, переходный, турбулентный). В ряде случаев представляется также существенным знание масштаба турбулентности, а также наличия вибраций сопла - продольных и поперечных, их величина и спектры. Характеризуются они величиной вибрационного ускорения, которая измеряется специальными вибродатчиками.  [c.35]

Пограничный слой. При движении вязкой жидкости около стен образуется слой, скорость которого равна нулю при ламинарном и близка к нулю при турбулентном движении. Наличие слоя объясняется тормозящим действием стенки. Этот малоподвижный слой, получивший название пограничного слоя , тормозит движение соприкасающегося с ним слоя жидкости, а тот, в свою очередь, тормозит следующий и т. д. Следствием этого является неравномерное распределение скоростей по сечению потока от максимальной скорости по оси до нулевой у стенок. При ламинарном движении распределение скоростей подчиняется закону параболы (фиг. 6, а). Средняя скорость движения потока в этом случае равна половине максимальной, т. е. Ыср = 0,5итах. В случае турбулентного движения эпюрэ скоростей тоже представляет собой параболу, но с более тупой вершиной (фиг. 6, б). Средняя скорость потока при турбулентном движении колеблется в пределах 0.8—0,9 от максимальной скорости.  [c.46]

ТРОПОСФЕРА — ближайший к земной поверхности слой атмосферы, простирающийся в полярных и умеренных широтах до высоты 8—11 км, а в тропиках — до 15—18 км. В Т. сосредоточено около 1/5 массы атмосферы и почти весь водяной пар, конденсация к-рого вызывает образование облаков и связанных с ними осадков. В Т., особенно в пограничном слое, сильно развита турбулентность, резко увеличивающая вязкость воздуха и вызывающая его вертикальное и горизонтальное перемешивание. Т. к. воз-71,ух слабо поглощает солнечную радиацию, основным источником тепловой энергии для Т. служит поверхность Земли. От нее тепло передается вверх инфракрасным излучением, к-рое поглощается содержащимися в воздухе водяным паром и углекислым газом. Кроме того, происходит вертикальный турбулентный перенос тенла. Па локальные характеристики темп-рного поля влияет тепло фазовых переходов воды и адиабатич. нагревание и охлаждение при вертикальных перемещениях воздуха. В среднем в Т. темп-ра падает с высотой на 6,5 град/км. Темп-ра на каждом из уровней испытывает, кроме периодических (суточных и годовых), также и непериодич. колебания, вызываемые перемещением воздушных масс из одних районов в другие. Относит, изменчивость вертикальных градиентов темп-ры менее значительна, но и они меняются в широких пределах. Особенно велики периодические и непериодич. колебания значений темп-ры, влажности, давления, ветра и их градиентов в пограничном слое. Давление воздуха на уровне моря в среднем близко к 1013. мб, но горизонтальное его распределение из-за неодинаковости степени нагревания поверхности Земли в разных районах и др. причин весьма сложно и быстро меняется со временем, что связано с возникновением и эволюцией циклопов, антициклонов и их перемещением. Горизонт, градиенты давления приводят к образованию ветров, на направление и скорость к-рых влияют также силы вязкости (в пограничном слое) и силы инерции. В движениях большого масштаба особенно велика роль Кориолиса силы. Основной перенос воздуха в Т. идет с запада на восток, скорость его растет с высотой на 1—4 м/сек на км. Наиболее сильны ветры в струйных течениях. О влиянии Т. на распространение радиоволн см. Распространение радиоволн.  [c.204]


Обозначения, принятые в этой и исследующих формулах q— плотность теплового потока — наименьшая плотность теплового потока г—энтальпия среды )л—динамическая вязкость к—коэффициент гидравлического сопротивления I — масштаб турбулентности рп,, р"— плотность воды и пара ротл—плотность отложений V—удельный объем VQ — удельный объем на входе в трубу ш—средняя скорость потока Ш погр — скорость Б пограничном слое яг —показатель 7б,5— /5,4 О коэффициент диффузии В — коэффициент массопередачи Лт — коэффициент, зависящий от скорости парообразования — коэффициент, распределения между паром и водой 1, 2, Ь, 4, / — коэффициенты пропорциональности б — толщина пограничного слоя 6п — толщина пленки вокруг парового пузыря do—отрывной диаметр пузыря Спот, Спот.вх — концентрация вещества в потоке и на входе Спогр — концентрация вещества в пограничном слое Сп.в — концентрация вещества в питательной воде Ср — растворимость вещества У — степень упаривания t u,, ts — температура стенки и насыщенного раствора.  [c.17]

Хаос течения в трубке. Хотя основное внимание теория динамических систем уделяет течениям с замкнутыми линиями тока, в инженерных разработках важное место занимают открытые течения. Среди них течения над воздушным крылом, пограничные слои, струи и течения в трубках. Недавно на приложения теории нелинейной динамики к проблемам перехода от ламинарного к турбулентному течению в открытых течениях стали обращать больше внимания. Один из примеров — опыт Сринивасана [179] из Йельского университета по исследованию перемежаемости течения в трубе. В этой задаче течение ламинарно и стационарно при малой скорости, но становится турбулентным при достаточно больших средних скоростях. Переход от ламинарного к турбулентному течению, происходящий при определенной критической скорости, по< видимому, осуществляется через перемежаемые вспьш1ки турбулентности. По мере увеличения скорости увеличивается доля времени, которое система проводит в хаотическом состоянии до тех пор, пока течение не турбулнзуется полностью. Некоторые наблюдения этого явления восходят к Рейнольдсу (1883 г.). Основной предмет исследований сейчас состоит в попытке связать параметры этой перемежаемости, например распределение длительности вспышек, с динамическими теориями перемежаемости (см., например, [157]).  [c.122]


Смотреть страницы где упоминается термин Распределение средней скорости в турбулентном пограничном слое : [c.272]    [c.98]    [c.98]    [c.295]    [c.170]    [c.749]   
Смотреть главы в:

Гидродинамика и тепломассообмен в пограничном слое Справочник  -> Распределение средней скорости в турбулентном пограничном слое



ПОИСК



Пограничный слой турбулентный

Пограничный турбулентный

Распределение скоростей

Распределение скоростей в турбулентном пограничном слое

Распределение средней скорости

Скорость средняя

Скорость турбулентном

Скорость турбулентности

Слой средней скорости

Слой турбулентный

Турбулентное распределение скоростей

Турбулентность (см. Пограничный

Турбулентные пограничные слои



© 2025 Mash-xxl.info Реклама на сайте