Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффект поля. МДП-структуры

ЭФФЕКТ ПОЛЯ. МДП-СТРУКТУРЫ  [c.250]

Кроме того, этот же метод позволяет отличить монокристаллы от поликристаллов. При повороте столика микроскопа монокристалл при скрещенных поляризаторах будет максимально просветляться или становится невидимым сразу по всему полю поликристалл, в котором входящие в него кристаллы различно ориентированы, не может произвести этот эффект — поле зрения будет пестрым, отдельные одинаково ориентированные кристаллы будут заметно выделяться на общем фоне, что даст возможность при повороте столика микроскопа определять структуру поликристалла.  [c.248]


Вывод (3.5) о том, что при В экран не оказывает влияния на дифрагированную волну, справедлив лишь для достаточно плавных раснределений поля и ( , т]) на отверстии. В противном случае функцию и нельзя выносить из-под" интеграла (3.4) в точке стационарности, и метод не дает правильных результатов. Так, например, когда и ( , т]) постоянна на отверстии и равна нулю вне его, начинают сильно сказываться краевые эффекты. Поле дифрагированной волны, даже на оси х = у = 0), приобретает сложную осциллирующую структуру.  [c.257]

Эксперименты показали, что в ультразвуковом поле, в зависимости от условий кристаллизации вещества, может происходить диспергирование растущих кристаллов и увеличение скорости зарождения центров кристаллизации. При положительном температурном градиенте в расплаве (при росте кристаллов в перегретый расплав) действие ультразвука в основном проявляется в диспергировании растущих кристаллов, увеличения скорости зарождения центров в этом случае не происходит. При введении ультразвука в переохлажденный расплав наблюдается увеличение скорости зарождения центров кристаллизации, причем возможно и диспергирование растущих кристаллов. Чтобы оценить вклады, вносимые диспергированием и зарождением кристаллов в эффект измельчения структуры, были проведены эксперименты по ультразвуковой обработке органических веществ и металлов, кристаллизующихся при отрицательном температурном градиенте в расплаве. Расплав в пробирке (см. рис. 12) переохлаждался до определенной температуры, превышающей порог  [c.455]

Большое число действующих на процесс кристаллизации факторов ультразвукового поля затрудняет оценку влияния каждого из них на возникновение того или иного эффекта изменения структуры слитка. Еще в большей степени усложняет эту задачу наличие поглощения колебаний в твердой фазе и расплаве.  [c.461]

Некоторые особенности эффекта Керра в жидкости. Следует остановиться на особенности эффекта Керра в жидкостях. При включении внешнего электрического поля искусственная анизотропия жидкости не исчезает мгновенно. Требуется определенное время, так называемое время релаксации, зависящее от структуры данной жидкосги, для того, чтобы анизотропная жидкость снова перешла б изотропное состояние, т. е. повернутые диполи под  [c.291]

Для того чтобы источник испускал достаточно монохроматическое излучение с хорошо воспроизводимой средней длиной волны, нужно по возможности устранить все причины, возмущающие излучение. Свечение должно вызываться в парах низкого давления во избежание возмущений вследствие соударений атомов и при небольшом разрядном токе для ослабления возмущающего действия электрических полей (эффект Штарка), обусловленных электронами и ионами пара при значительной их концентрации. Наиболее трудно устранить влияние эффекта Допплера (см. 128), вызванного тепловым движением излучающих атомов, и осложнения, связанные со структурой излучающих атомов. Для ослабления эффекта Допплера желательно иметь в качестве излучателя вещество с атомами возможно большей массы, обладающее необходимой упругостью пара при возможно низкой температуре (см. 22). Сложность излучаемых  [c.143]


Сложность картины этого аномального эффекта Зеемана не случайным образом связана со сложным характером линии в отсутствие внешнего магнитного поля. Общая причина лежит в том, что электрон, кроме электрического заряда, обладает еще и определенным магнитным моментом. Взаимодействие этого магнитного момента с магнитным полем, господствующим внутри атома, приводит к сложной структуре спектральных линий, а взаимодействие его с внеш-  [c.627]

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]

Намагничение ферромагнитного образца, имеющего нулевой результирующий магнитный момент при Н = 0, происходит за счет изменения формы и ориентации доменов (рис. 10.18). В слабых полях наблюдается увеличение объема выгодно расположенных относительно внешнего поля доменов, за счет доменов с невыгодной ориентацией, т. е. имеет место процесс смещения границ доменов. Процесс намагничения в слабых полях обратим. Если внешнее поле снять, то домены восстановят исходную форму и размеры. Увеличение поля приводит к тому, что рост выгодно ориентированных доменов осуществляется тоже за счет необратимых процессов. Обратимому смещению границ доменов могут, например, препятствовать дефекты кристаллической структуры. Чтобы преодолеть их действие, граница домена должна получить от внешнего поля достаточно большую энергию. Если снять намагничивающее поле, то дефекты помешают границам доменов вернуться в исходное положение. Процессы необратимого смещения границ доменов обусловливают эффект Баркгаузена, заключающийся в том, что  [c.344]

Уровни электрической структуры — это уровни энергии, получающиеся при расщеплении уровней энергии свободных атомов и молекул во внешнем электрическом поле. Происходит расщепление как электронных уровней атомов и молекул, так и вращательных уровней молекул, обладающих дипольным электрическим моментом. Величина расщепления электронных уровней энергии в сильных полях (порядка десятков и сотен тысяч вольт па сантиметр) достигает десятитысячных и тысячных долей электрон-вольта. Для вращательных уровней энергии в применяемых электрических полях порядка тысяч вольт па сантиметр величина расщепления составляет миллионные доли электрон-вольта. В видимой и ультрафиолетовой областях спектра наблюдается расщепление спектральных линий атомов в электрическом поле, соответствующее расщеплению электронных уровней энергии, которое носит название эффекта Штарка. Расщепление вращательных уровней дипольных молекул в электрическом поле может изучаться непосредственно радиоспектроскопическим методом электрического резонанса.  [c.229]


Для экспериментального измерения внешних квадруполь-ных моментов используются те же методы, что и для измерения магнитных дипольных моментов, т. е. изучение сверхтонкой структуры оптических спектров и радиочастотные резонансные методы. Взаимодействие квадрупольного момента с градиентом внутриатомного электрического поля определенным образом нарушает правило интервалов (2.17), что и дает возможность отделить расщепление уровней, связанное с наличием квадрупольного момента у ядра, от эффектов, обусловленных ядерным магнитным моментом.  [c.67]

Если соединить выражения для отдельных физических эффектов в отношения, то оказывается, что влияние таких отношений на характер протекания процесса выступает более наглядно, чем влияние этих же двух эффектов, взятых порознь. Структура таких отношений служит основой для составления комплексов. Уравнение (2.54) не содержит сведений о взаимодействии тела с окружающей средой. В то же время теплообмен тела с окружающей средой окажет влияние на формирование его температурного поля. Поэтому уравнение следует дополнить краевыми условиями. Обычно в задачах о теплообмене среды с твердым телом бывает задана температура среды.  [c.30]

Развитие процессов теплообмена зависит от соотношения между эффектами, а не от их абсолютных значений. Структура таких отношений служит основой для составления комплексов. Уравнение (19.14) не содержит сведений о взаимодействии тела с окружающей средой. Но теплообмен оказывает влияние на формирование температурного поля тела. Поэтому дополним (19.14) краевыми условиями. В рассматриваемых условиях задается температура среды, поэтому выбирают граничные условия третьего рода в форме уравнения (19.16)  [c.189]

Как уже отмечалось, свойства активатора и матрицы взаимосвязаны, поэтому, когда данный ион вводится в конкретную матрицу, его свойства несколько изменяются. Это объясняется прежде всего тем, что ионы активатора находятся в матрице в электрическом (кристаллическом) поле, создаваемом ее ионами и расщепляющим его энергетические уровни (эффект Штарка). Чтобы все ионы активатора находились в одинаковых кристаллографических положениях, т. е. их расщепление и, следовательно, энергии уровней совпадали, они должны изоморфно замещать вполне конкретные ионы матрицы. Следует заметить, что и в этом случае всегда имеется некоторый разброс кристаллического поля как вследствие тепловых колебаний решетки матрицы, так и наличия в ней дефектов структуры. Все это вызывает уширение энергетических уровней и в результате уширение спектральных полос, соответствующих переходам между этими уровнями.  [c.66]

Вследствие преломления линий магнитного потока на фазовых границах элементов структуры г езр взаимодействия полей имеет место искажение первичного поля структурой металла. Это явление, которое можно характеризовать как граничный микроиндук-ционный эффект , выражается в образовании микрообластей кон-  [c.209]

Взаимодействие магн. момента электронной оболочки с моментами ато.мных ядер проявляется в двух эффектах сверхтонкой структуре уровней энергии молекулы и магн. нкранировании ядер. Последнее возникает при наложении внеш. магн. поля, когда из-за диамагнетизма оболочки в месте расположения ядер возникает внутр.. магн. поле, ослабляющее внешнее.  [c.638]

Влияние внешних полей. Структура края фуидам. Поглощения изменяется под влиянием электрик, и магн. полей. Электрич. попе наклоняет зоны и делает возможным туннельный переход при йш < Sg (си. Келдыша — Франца эффект). Магн. иоле вызывает квантование энергии электронов и дырок, т. е. возникновение эквидистантных Ландау уровней, расстояние между к-рыми равно кеШт, где т — эфф. масса электрона или дырки. Плотность состояний носителей заряда вблизи уровней Ландау возрастает, вследствие чего появляются осцилляции коэф. поглощения как ф-цни частоты света. Максимум поглощения соответствует переходам между уровнями Ландау. Изучение осцилляций позволяет расшифровать спектр электронов и дырок (см. Квантовые осцилляции в магнитном поле).  [c.42]

Структуру металл — диэлектрик — полупроводник сокращенно называют МДП-структурой. Если в качестве диэлектрика применяют оксид, то в целях конкретизации, ее называют МОП-структурой. Эффект поля лежит в основе принципа работы Л ДП-транзисто-ров.  [c.81]

Приведенные примеры иллюстрируют специфические черты процесса нелинейной ионизации атомов — практически всегда, при любой напряженности ионизующего поля, от субатомной до сверхатомной, возникают различные эффекты, изменяющие структуру исходного невозмущенного атома и оказывающие существенное влияние на процесс его нелинейной ионизации.  [c.21]

Наибольшей загадкой для исследователей долгое время являлись весьма малые сечения захвата этой группы состояний, не свойственные дефектам в объеме твердого тела. Многие связывали это с наличием буферного слоя, отделяющего МСГ от полупроводника. Предполагалось даже, что МСГ находятся на внешней поверхности структуры полупроводник-оксид. Измерения методом эффекта поля не подтвердили эту точку зрения кинетика медленной релаксации при включении поперечного электрического поля и при адсорбции (когда поле отсутствует) оказалась одинаковой. Медленная релаксация наблюдалась не только в полупроводниках с оксидными пленками (Ge, Si, GaAs и др.), но и в чистых оксидах и сульфидах (СиО, ZnO и dS), где МСГ располагаются в нарушенном поверхностном слое. Все эти особенности МСГ мы подробно обсудим в гл. 8 при рассмотрении механизма захвата на адсорбционные состояния.  [c.198]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]


Огромное число спектральных линий имеет сложную структуру, т. е. представляет собой муль-типлеты (две или несколько тесно расположенных спектральных линий, обусловленные наличием у электрона кроме электрического заряда магнитного момента). Магнитное поле воздействует на эти мульти-плеты, в результате чего наблюдается более сложная картина расщепления, так называемый аномальный эффект Зеемана.  [c.293]

Представляет интерес искусственное вращение плоскости поляризации при освещении образца излучением, частота которого близка к частоте поглощения исследуемого вещества, т.е. когда затуханием колебаний нельзя пренебречь. Эта задача осложнена тем, что до сего времени мы не интересовались, что происходит со спектральной линией, если источник света или поглощающая среда помещены в магнитное поле, Как было впервые установлено в 1896 г. Зееманом, при этом линия расш,епляется на несколько компонент (эффект Зеемана). Число таких компонент, взаимное расположение и относительная интенсивность определяются структурой энергетических уровней, при переходах между которыми возникла исследуемая спектральная линия, и существенно зависят от напряженности прилаженного магнитного по ля. Эффект Зеемана — важное для спектроскопии и атомной физики явление, которое до конца объясняется с позиций кван товой механики.  [c.165]

Мезонные теории ядерных сил строятся по аналогии с квантовой электродинамикой. Как известно, в квантовой электродинамике электромагнитное поле рассматривается совместно со связанными с ним частицами — фотонами. Оно как бы состоит из фотонов, которые являются его квантами. Энергия поля равна сумме энергии квантов. Фотоны возникают (исчезают) при испускании (поглощении) электромагнитного излучения (например,. света). Источником фотонов является электрический заряд. Взаимодействие двух зарядов сводится к испусканик> фотона одним зарядом и поглощению его другим. При такой постановке вопроса становится возможным рассмотрение новых, явлений, относящихся к классу взаимодействий излучающих систем с собственным полем излучения. Этим путем удается,, например, объяснить аномальный магнитный момент электрона и мюона (см. 10, п. 3 И, п. 6), лэмбовский сдвиг уровней в тонкой структуре атома водорода и ряд других тонких эффектов.  [c.9]

КОИ структуры — десятимиллионные доли электрон-вольта. Наблюдение переходов между соседними уровнями магнитной структуры обычно производится радиоспектроскопическими методами магнитного резонанса. Рас-пгепление спектральных линий в магнитном поле носит название эффекта Зеемана.  [c.229]

Сверхтонкая структура. Если ядро парамагнитного иона обладает снином /, то имеет место небольшое расщеиленне основного уровня (эффект сверхтонкого расщепления). Оно состоит из двух частей, обусловленных 1) магнитным взаимодействием между магнитными моментами ядра и электронов и 2) электрическим взаимодействием между электрическим квадру-иольным моментом ядра и градиентом (в месте расположения ядра) электрического поля, создаваемого электронами. Первая из этих составляющих имеет порядок 10 eлГ , вторая еще меньше.  [c.465]

Случай цилиндра, помещенного в продольное поле, очень прост, поскольку он может находиться только в одном из двух состояний — нормальном илп сверхпроводящем. При умепьигеппи внешнего поля от некоторого значения, превышающего Яцр., до нуля у идеально проводящего цилиндра должен остаться большой замороженный парамагнитный момент, тогда как в соответствии с эффектом Мейснера момент цилиндра должен быть равен нулю. Постулат обратимости, раснространенный на образцы других геометрических форм, ограничивает типы возможных структур промежуточного состояния. Сверхпроводящие области в промежуточном состоянии в основном  [c.624]

Как показал Лондон ([13], стр. 128), для того чтобы мог иметь место эффект Мейснера, параметр Д должен быть положительным. С другой стороны, полная свободная энергия образца должна, разумеется, уменьшаться при образовании в нем топкого слоя нормальной фазы, параллельного магнитному полю. Рассмотрим, например, пластинку в параллельном ее поверхности ноле. Во внешнем ноле Н магнитная энергия сверхпроводящей фазы возрастает на величину Я /8-тс на единицу объема. Предположим теперь, что образец состоит из ряда нормальных и сверхпроводящих слоев, таких, что толщина сверхпроводящего слоя превосходит глубину иропикновения поля, а толщина нормального слоя мала по сравнению с толщиной сверхпроводящего. Такое расслоение приводит к заметному прониканию поля в пластинку, сопровождающемуся уменьшением ее магнитной энергии на величину порядка но не вызывает большого изменения ее энергии при ноле, равном нулю. Число образовавшихся при этом границ равно по порядку 2Й/Х, где d—толщина пластинки. Слоистая структура в поле будет энергетически выгодна, пока  [c.730]

При дальнейшем увеличении поля тонкое расщепление уровней можно не учитывать по сравнению с дополнительной энергией, приобретаемой атомом в поле. В таком приближении уровни тонкой структуры можно считать вырожденными (совпадающими по энергиям). При этом снова наблюдается линейный штарк-эффект. Для водородного атома с его очень малым тонким расщеплением уровней электрические поля практически во всех источниках света являются достаточно большими, чтобы наблюдался линейный эффект Штарка.  [c.265]

Хотя в сильном магнитном поле спин-орбитальная связь разорвана, определенное спин-орбитальное взаимодействие все же существует. Однако энергия этого взаимодействия меньше энергии взаимодействия орбитального и спинового магнитного моментов с магнитным полем. Если учесть это остаточное спин-орбитальное взаимодействие, то оно дает дополнительное мульгиплетное расщепление, приводящее к возникновению тонкой структуры линий в эффекте Пашена-Бака, которая здесь не рассматривается ввиду ее малости.  [c.254]

При исследовании гетерогенных сред необходимо учитывать гот факт, что фазы присутствуют в виде макроскопических (по отношению к молеку [ярным размерам) включений или среды, окружающей эти включения. Поэтому деформация каждой фазы, определяющая ее состояние и реакцию, связана, в отличие от гомогенной смеси (см. (1.1.31)),не только со смещением внешних границ (описываемым полем скоростей Vj, которое прежде всего может существенно отличаться от ноля среднемассовых скоростей v) выделенного объема, но и со смещением межфазных поверхностен внутри выделенного объема смеси. Учет этого обстоятельства при определении тензоров напряжений Oi требует привлечепия условий совместного деформирования и движения фаз, условий, учитывающих структуру составляющих среды (форма и размер включений, их расположение и т. д.). Заметим, что в тех случаях, когда эффекты прочности не имеют значения (газовзвеси, эмульсии, суспензии, жидкость с пузырьками, твер дые тела при очень высоких давлениях), условия совместного деформирования являются существенно более простыми, чем в общем случае. Они по существу сводятся к уравнениям, определяющим объемные содержания фаз а,. Наиболее часто встречающимися такого рода уравнениями является условие равенства давлений фаз или несжимаемости одной нз фаз.  [c.27]

Тензор напряжений в двухфазной упругопластическоп среде. Как указывалось, средняя деформация и среднее напряжение элемента первой фазы прп заданном воздействии определяются не только смещением внешних границ этого элемента, описываемого полем скоростей v(x, t), но и омещешюм межфазных границ внутри этого элемента. Но смещение межфазных границ зависит как от свойств, так и от структуры обеих фаз в смеси. Поэтому в теории движения гетерогенной среды должны учитываться условия совместного поведения или деформирования фаз, которые, кроме физических свойств фаз в общем случае должны учитывать структуру фаз (форму включений, их размер, взаимное расположение). Эффекты прочности твердых фаз могут существенно усложнять указанные условия, которые должны учитывать и различие упругопластических свойств фаз.  [c.146]


ИОННАЯ МИКРОСКОПИЯ. Для прямого анализа расположения атомов вокруг линии дислокации необходимо очень высокое разрешение. В настоящее время такое разрешение дает только ионный микроскоп (ионный проектор), принцип действия которого состоит в следующем. С поверхности образца, представляющего собой иглу с очень малым радиусом закругления острия (менее 10 см), находящуюся под действием поля высокого напряжения, срываются электроны. За счет эффекта поляризации на игле осаждаются молекулы нейтральнм о газа. После соприкосновения с ио-верхностью металла молекулы газа диффундируют к острию иглы. Когда такая молекула попадает в область местного усиления поля высокого напряжения, происходит ее ионизация и ион летит под действием ускоряющего высокого напряжения к флуоресцирующему экрану прибора. Этот метод, имеющий наибольшее разрешение из всех известных в настоящее время прямых методов исследования структуры материалов, позволяет различать отдельные атомы в кристаллах. Увеличение прибора определяется соотношением между радиусом кривизны острия и расстоянием от объекта до экрана и может достигать нескольких миллионов.  [c.94]

Механизм упрочнения при старении сплавов различных систем состоит в том, что зоны предвыделений и образующиеся дисперсные частицы, имея по сравнению с матрицей различные упругие свойства, создают поля напряжений, взаимодействующие с дислокациями. В результате движение дислокаций через кристалл затормаживается и деформация сплава затрудняется с другой стороны, дисперсные частицы оказывают также сопротивление переползанию дислокаций (см. рис. 58). Например, у магнитотвердых сплавов структура, возникающая на различных стадиях старения в системе Fe—Ni—Al, способствует увеличению коэрцитивной силы, поскольку зоны предвыделений и области дисперсных выделений, будучи соразмерными с величиной доменов, задерживают переориентацию стенки Блоха в процессе перемагничи-вания сплава. Эффект старения наблюдают и используют не только в системах цветных сплавов (на основе алюминия, магния, титана, никеля), но и в сплавах на основе железа и, в частности, у стали, содержащей  [c.112]


Смотреть страницы где упоминается термин Эффект поля. МДП-структуры : [c.251]    [c.43]    [c.237]    [c.313]    [c.274]    [c.197]    [c.80]    [c.527]    [c.628]    [c.167]    [c.505]    [c.656]    [c.255]    [c.188]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> Эффект поля. МДП-структуры



ПОИСК



Структура поля

Эффект поля



© 2025 Mash-xxl.info Реклама на сайте