Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подшипники скольжения — Виды трения

При граничном и полусухом трении коэфициент трения обычно и.меет порядок десятых долей единицы нагрев и износ при этом велики, поэтому в подшипнике скольжения эти виды трения крайне нежелательны, но они могут иметь место при пусках и остановках под полной нагрузкой.  [c.570]

Таким образом, внутреннее трение не всегда оказывает стабилизирующее воздействие на колебания вращающегося ротора, а может в некоторых случаях порождать неустойчивость этого движения. Поэтому в тех случаях, когда другие источники трения несущественны (например, при изучении колебаний сравнительно гладкого ротора, вращающегося в подшипниках качения) и требуется изучить вопрос об устойчивости вращения в закритической области, пренебрегать силами внутреннего трения нельзя. Однако у любых жестких роторов, у которых ш < < кр. внутреннее трение способствует устойчивости и поэтому пренебрежение им допустимо. Невелика роль внутреннего трения и у роторов с подшипниками скольжения, так как трение в них значительно превосходит по величине трение в материале. Для таких роторов основной вид трения — это внешнее трение в смазочном слое подшипников.  [c.59]


Сущ,ественное влияние на работоспособность пластмассовых подшипников скольжения оказывают вид и физико-химические свойства смазки, которая снижает коэффициент трения и охлаждает подшипник. Способ смазки и вид смазочного материала выбирают с учетом размера подшипника, напряженного состояния и скоростного режима.  [c.224]

Нижняя головка выполнена разъемной. Крышка 6 крепится к нижней головке двумя шатунными болтами 8, 9, охватывая шейку коленчатого вала. Для уменьшения трения в нижней головке устанавливают подшипник скольжения в виде стальных  [c.53]

Использование пластмасс в подшипниках скольжения. В узлах трения многих видов оборудования недопустимо или крайне нежелательно применять смазку. Например, по технологии производства часто исключается смазка в машинах пиш евой, текстильной, бумажной и химической промышленности. Все это обусловило широкое внедрение пластмасс в производство подшипников для данных отраслей промышленности.  [c.746]

Различают два основных вида трения трение скольжения и трение качения. Трение скольжения возникает в том случае, когда какие-либо точки на поверхности тела вступают непрерывно в соприкосновение с точками на поверхности другого тела. Трение скольжения возникает в различных ползунах, подшипниках скольжения и пр. Трение качения связано с перекатыванием одной поверхности по другой без проскальзывания. При этом в соприкосновение непрерывно вступают новые точки обеих поверхностей. При трении качения возникают значительно меньшие силы трения, чем при трении скольжения. Этим объясняется широкое применение в машинах подшипников качения.  [c.22]

Использование вероятностных методов расчета. Основы теории вероятности изучают в специальных разделах математики. В курсе деталей машин вероятностные расчеты используют в двух видах принимают табличные значения физических величин, подсчитанные с заданной вероятностью (к таким величинам относятся, например, механические характеристики материалов ст , o i, твердость Ни др., ресурс наработки подшипников качения и пр.) учитывают заданную вероятность отклонения линейных размеров при определении расчетных значений зазоров и натягов, например в расчетах соединений с натягом и зазоров в подшипниках скольжения при режиме жидкостного трения.  [c.10]


В подшипниках скольжения встречаются три основных вида трения жидкостное, полужидкостное и полусухое.  [c.329]

Виды трения смазанных поверхностей. В зависимости от толщины слоя смазки, разделяющего трущиеся поверхности, различают жидкостное и полужидкостное трение. При жидкостном трении слой смазки имеет толщину порядка нескольких десятков микрометров. Эта толщина так велика, что даже вершины самых больших неровностей на поверхностях скольжения не могут касаться друг друга. При этом трение в подшипнике определяется только законами гидродинамики. Износ практически отсутствует.  [c.325]

В зависимости от вида трения подшипники делятся на п о д-шипники скольжения и подшипники качения.  [c.308]

По виду трения подщипники разделяют на подшипники скольжения и качения.  [c.319]

Подшипники качения (рис. 294) обычно состоят Из наружного 1 и внутреннего 2. колец, тел качения 3 в виде шариков или роликов и сепаратора 4. Наружное и внутреннее кольца служат для соединения подшипника с корпусом и валом. Сепаратор удерживает тела качения на равном расстоянии друг от друга. В процессе движения шарики (ролики) перекатываются по беговым дорожкам колец А. Подшипники качения по фавнению с подшипниками скольжения обладают следующими преимуществами меньшие потери на трение и незначительный нагрев меньшие требования к уходу, меньший расход смазочных материалов значительно меньший расход цветных материалов более высокая точность и меньшая стоимость вследствие стандартизации и централизованного массового производства.  [c.322]

На фиг. 33 показан общий вид указателя течения масла, а в табл. 9 приведены характеристики и основные размеры этих указателей. Указатели течения применяются для визуального контроля подачи масла к зубчатым и червячным зацеплениям и подшипникам скольжения редукторов, шестеренных клетей и электрических машин, подшипникам жидкостного трения и крупногабаритным подшипникам качения, установленным на шейках валков прокатных станов. Указатель устанавливается непосредственно на трубопроводе, подводящем смазку к зацеплению или подшипнику, в удобном для наблюдения месте. Под давлением масла, поступающего в корпус указателя справа, по направлению стрелки на корпусе, затвор указателя, преодолевая сопротивление пружинки, отклоняется на некоторый угол по часовой стрелке и при прохождении через указатель непрерывного потока масла остается в этом положении, немного отклоняясь от него в ту и другую сторону. Колебания затвора, отклоненного потоком масла, наблюдаются через стекло указателя.  [c.69]

Очень важно отметить, что при со < 2со р масляный клин подшипников скольжения не просто способствует устойчивости вращения ротора, но и интенсивно гасит его колебания, значительно превосходя по демпфирующему воздействию другие виды трения. Поэтому роторы на подшипниках скольжения часто проектируются гибкими и практика эксплуатации таких машин показывает, что у них переход через первую критическую скорость сопровождается лишь вполне допустимым по условиям эксплуатации ростом амплитуд вынужденных колебаний от небаланса.  [c.61]

Однако следует иметь в виду, что этот принцип не имеет места в системах с непотенциальными силами, т. е. силами, работа которых зависит от пути, по которому система приводится в окончательное положение. Такими силами, в частности, являются силы гидродинамического и электродинамического происхождения. Так, например, роторы, вращающиеся в подшипниках скольжения, в электромагнитном поле, роторы с учетом сил внутреннего трения, являются неконсервативными системами и принцип взаимности в этих системах не имеет места.  [c.363]

Детали арматуры могут подвергаться различным видам изнашивания. Механическое изнашивание происходит в результате взаимного трения деталей, например уплотнительных колец задвижек, шпинделя и ходовой гайки в их резьбовом соединении, валов в подшипниках скольжения и т. п. Степень изме-  [c.263]


Мы видим, что сила трения пропорциональна вязкости смазочного вещества, числу оборотов вала в единицу времени п и, кроме того, зависит от ширины зазора К между поверхностями вала и подшипника. Полученная зависимость справедлива в опытах с трением в подшипниках скольжения для достаточно больших скоростей. Но по мере уменьшения скорости вращения обнаруживаются отклонения от этой формулы, момент трения начинает убывать медленнее числа оборотов вала.  [c.93]

При выборе материала для подшипников скольжения учитывают нагрузку подшипника, число оборотов вала, род нагрузки, среду, в которой подшипник должен работать (влияние температуры и влажности), и особенно вид трения, при котором подшипник должен работать. Обычно различают три главных случая  [c.214]

Полиамидные вкладыши опорных подшипников скольжения выполняют в виде монолитных неразрезных либо разрезных втулок. Получают более широкое распространение подшипники с расширительным швом [3, 4, 57], которые имеют ряд преимуществ. Подшипники с расширительным швом подходят для валов с различными допусками на изготовление. Шов компенсирует температурно-влажностные изменения зазора в соединении и одновременно он служит в качестве смазочной канавки. Для уменьшения коэффициента трения применяют различные смазки.  [c.242]

Для прокатных валков применяют как подшипники скольжения, так и качения. Однако вследствие дороговизны и сложности конструкции подшипников качения больших диаметров этот тип подшипников для прокатных валков имеет ещё ограниченное распространение и основная часть прокатных станов оборудуется подшипниками скольжения открытого и закрытого типов. В подшипниках открытого типа вкладыши устанавливаются только со стороны реакции подшипника и не охватывают шейку со всех сторон. В подшипниках закрытого типа вкладыши сделаны в виде цилиндрических втулок с обеспечением жидкостного трения.  [c.897]

Разработанные само смазывающиеся материалы нашли применение в машиностроении, приборостроении в виде сепараторов подшипников качения в подшипниках скольжения, шестерен редукторов сухого трения, в виде покрытий для направляющих станков с программным управлением (повышение износостойкости станин, снижение автоколебаний, улучшение класса частоты обрабатываемой детали), в виде подмазывающих элементов при горячей прокатке тугоплавких металлов в вакууме. Высокая технологичность разработанных материалов особенно ЭДМА и НАСПАН, а также то, что для изготовления деталей трения не требуется специальных линий, сложной технологической оснастки, все больше привлекает внимание промышленности.  [c.201]

Материал части I справочника содержит номенклатуру выпускаемых в настоящее время антифрикционных материалов на основе полимеров, их сравнительную характеристику с точки зрения использования в работающих при недостаточном смазывании подшипниковых узлах машин и приборов проверенные экспериментальным путем алгоритмы расчета узлов трения результаты расчетов на ЭВМ ЕС в виде зависимостей их теплоотводящей способности, температурного поля, требуемого сборочного зазора и допустимых режимов эксплуатации от конструктивного исполнения узлов и свойств используемых материалов рекомендации по применению термопластичных подшипников скольжения и основным направлениям улучшения их работоспособности.  [c.8]

ПОДШИПНИКИ СКОЛЬЖЕНИЯ Виды трения скольжения  [c.297]

Полужидкостное трение — смешанное трение, одновременно жидкостное и граничное или жидкостное и сухое. Обычно этот вид трения имеет место в подшипниках скольжения при пуске машины.  [c.134]

При подвижном контакте по поверхности (в подшипниках скольжения, направляющих станков и др.) применяют смазочные материалы для уменьшения трения и разогрева поверхностей от сил трения и их задира (виды трения-в сопряжениях рассмотрены в гл. 9).  [c.18]

Подшипник — это опора или направляющая, которая воспринимает нагрузки и допускает относительное перемещение частей механизма в требуемом направлении. Основное назначение подшипников — поддерживать вращающиеся детали в пространстве, воспринимая действующие на них нагрузки. В зависимости от вида трения подшипники делят на два типа скольжения и качения. В подшипниках скольжения рабочие поверхности вала и подшипника, полностью или частично разделенные смазочным материалом, скользят одна относительно другой.  [c.424]

По виду трения различают подшипники скольжения, у которых опорный участок вала скользит по поверхности подшипника подшипники качения, у которых трение скольжения заменяют трением качения посредством установки шариков или роликов между опорными поверхностями подшипника и вала.  [c.330]

Подшипники из текстолитов [2, 7, 8, 10, 12, 14, 15, 20]. Текстолитовые опорные подшипники скольжения в виде монолитных втулок и сегментных конструкций с продольными и поперечными сегментами обычно применяют в тяжелонагруженных узлах трения машин и механизмов, например, в узлах экскаваторов, прокатных станов, тяговых двигателей и т. п. Втулки изготовляют навивкой и прессованием заготовок с последующей их окончательной механической обработкой или вытачивают из полуфабрикатов, имеющих вид труб, прутков или плит. Наилучшими антифрикционкыми свойстваг 5и обладают втулки из витых и прессованных трубок. Втулки из плит имеют несколько худшие антифрикционные свойства и поэтому их применяют реже, преимущественно при изготовлении небольшого количества подшипников в индивидуальном и несерийном производстве.  [c.232]

По виду трения подшипники разделяют на под1пипники скольжения и качения.  [c.338]


Высшая кинематическая пара (рис. 7.10) в плоском механизме допускает два относительных движения звенья / и 2 могут скользить (v 2) И перекатываться друг по другу ( oi2). Поэтому и трение в высшей кинематической паре проявляется двояко в виде трения скольжения и трения качения. Тормозящее действие трения качения (Мк и,) в большинстве случаев весьма невелико, и поэтому его в дальнеЙ1пем учитывать не будем. Конечно, при расчете подшипников качения, при исследовании движения тяжелых предметов на подкладных катках и рольгангах и в других подобных задачах трением качения пренебрегать нельзя. Но такие задачи относятся к области специальных расчетов, а поэтому выходят за рамки учебной ДИСЦИПЛИН1  [c.233]

Подшипники являются оиорами валов и вращающихся осей. Они воспринимают нагрузки, приложенные к валу (оси), и передают их на корпус машины. От качества подшипников в значительной степени зависит надежность машин. По виду трения они делятся на подшипники скольжения и подшипники качения.  [c.296]

В Высшем техническом училище им. Отто фон Герике в г. Маг-денбурге проведено экспериментальное исследование [34], целью которого было выявить преимущества режима ИП в подшипниках скольжения по сравнению с другими видами трения (сравнительные испытания были проведены в средах глицерина, моторного масла и полиэтиленгликоля). Эксперименты показали, что подшипники скольжения, работающие в режиме ИП, имеют лучшие антифрикционные характеристики, чем подшипники, смазываемые моторным маслом и полиэтиленгликолем. Автор сделал вывод, что ИП рабочего материала позволяет подбирать характеристики трения и изнашивания для изменяющихся условий эксплуатации.  [c.202]

По виду трения различают подшипники качения и подшипники скольжения. По сравнению с подшипнякачи скольжения подшипники качения имеют преимущества малый коэффициент трения, большую грузоподъемность при меньшей ширине подшитгака, простоту монтажа, ухода и обслуживания, незначительный расход смазочных материалов. К недостаткам относятся значительно меньшая долговечность при больших частотах вращения и при больших нагрузках, большие наружные диаметры, ограниченная способность воспринимать ударные Нагрузки,  [c.222]

На рис. 247 показан один из таких графиков из опытов немецкого исследователя Штрибека. На нем приведены данные испытания одного из трансмиссионных подшипников скольжения с кольцевой смазкой и с самоустанавливающимися вкладышами при разных нагрузках, характеризующихся удельными давлениями, начиная с = 1 кПсм и кончая q = 25 кПсм . На графике по вертикальной оси отложены опытные значения коэффициента трения рассчитанного по вышеприведенной формуле (37), а по горизонтальной оси — числа п оборотов в минуту, а также и окружные скорости Уц цапфы в м1сек. Как видим, кривые протекают весьма своеобразно. Пусковой коэффициент трения, или коэффициент трения покоя /о> при всех удельных давлениях остается одним и тем же, а именно /о 0,14. По мере повышения скорости коэффициент трения начинает очень быстро снижаться, причем при какой-то скорости уменьшается больше, чем в 20 раз и достигает значения 0,005, одинакового почти для всех  [c.352]

Эффективной областью применения металлофторопластовых подшипников являются узлы сухого трения (т. е. узлы, работающие без смазки при значительных нагрузках и скоростях скольжения). Они характеризуются небольшим пусковым моментом и сохраняют работоспособность при интервале температур от —200° С до -Ь280°С. Условия применения к конкретным видам ыашпн изложены в работе [16].  [c.223]

В ИМАШ АН СССР проведены теоретические и экспериментальные исследования, позволившие выявить закономерности изменения информационных свойств виброакустических процессов при наличии дефектов монтажа и развития деградационных явлений при эксплуатации машин. Разработанные методы обнаружения и диагностирования зapoждaюш x я эксплуатационных дефектов основаны на анализе свойств вынужденных и собственных колебаний дефектных узлов. Проведенная при этом >-нифи-кация методов диагностирования дефектов на ранней стадии их развития базируется, в частности, на том, что для узлов трения (подшипники скольжения и качения, зубчатые зацепления и т.п.) основным деградационным эффектом, приводящим к отказу, является развитие локальных повреждений контактируемых поверхностей (выкрашивания, задиры, трещины). Установлено, в частности, что при всех видах дефектов развитие повреждений сопровождается увеличением глубины амплитудно-импульсной модуляции в зоне собственной частоты дефектного узла.  [c.27]

Различают следующие виды трения скольжения сухое (работа без смазки), которое в нормально работающих подшипниках не встречается полусухое или граничное, которое имеет место при малой скорости скольжения, иеустановившемся режиме работы и при недостаточной сма,зке. В зависимости от материала трущейся пары и условий работы коэффициент трения / и 0,1...0,25 нолужидкостное, при котором большая часть поверхностей цапфы и вкладыша разделены слоем смазки, но отдельные элементы поверхностей соприкасаются, / я 0,01...0,1 жидкостное, когда смазка полностью отделяет поверхность цапфы и вкладыша и их непосредственный контакт исключается, 0,001...0,01. В таких условиях работают точно 1.зготовленные подшипникн при относительно небольших нагрузках и высоких скоростях вращения. Но и у таких подшипников во время пуска и остановки трущиеся поверхности не разделены масляным слоем достаточной толщины.  [c.404]

В технической литературе имеются сведения о применении керамики в торцовых уплотнениях и подшипниках скольжения химических насосов. Привсдатся данные по абразивной износостойкости различных видов и марок кера лош. Предельно допустимые удельные нагрузки в парах трения торцовых уплотнений для наиболее износостойких и качественных марок керамики ЦМ-332, С-2, СГ-Т не должны превышать 6 МПа. Ситаллы рекомендуется применять при удельных нагрузках до 0,3 МПа. С другой стороны известно, что в аналогичных импортных насосах с давлением до 80 МПа плунжеры изготавливаются из керамических материалов. Поэтому необходимо было подобрать отечественную керамик, способную длительно работать в насосах высокого давления.  [c.53]


Смотреть страницы где упоминается термин Подшипники скольжения — Виды трения : [c.85]    [c.408]    [c.16]    [c.326]    [c.64]    [c.103]    [c.37]    [c.23]    [c.193]    [c.504]   
Справочник конструктора-машиностроителя Том 2 Изд.5 (1980) -- [ c.27 ]



ПОИСК



Подшипники Трение

Подшипники Трение в подшипниках

Подшипники скольжения

Подшипники скольжения - Виды

Подшипники скольжения — Виды трения расчета

Различные виды трения скольжения понятие о гидродинамической теории смазки подшипников проф Петрова

ТРЕНИЕ Трение скольжения

Трение Виды трения

Трение в подшипниках скольжения

Трение скольжения

Трение скольжения - Виды

Трение — Виды

Трение — Виды в подшипниках



© 2025 Mash-xxl.info Реклама на сайте