Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод конечных элементов для решения задач теплопроводности

Вариационный подход использовался прй составлении алгоритма метода конечных элементов для решения задачи теплопроводности (102). Сформулируем в общем виде задачу вариационного исчисления.  [c.187]

Для оценки температурных полей в геометрически сложных областях в последнее время часто применяется метод конечных элементов /1-5/. Можно отметить два подхода к решению нелинейной задачи теплопроводности. Первый из них заключается в предварительной линеаризации нелинейного уравнения теплопроводности с помощью метода оптимальной линеаризации /57 или метода Ньютона - Рафсона,я к линейному уравнению применяется процедура метода конечных элементов (МКЭ). Второй подход заключается в построении решения с использованием МКЭ дня нелинейной задачи в случае "слабой" нелинейности /зу или использовании итераций дня учета нелинейности /5,4/.  [c.133]


Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Все рассмотренные нами ранее разностные схемы для решения уравнений теплопроводности являются реализациями метода конечных разностей. Системы алгебраических уравнений для определения численного решения мы получали путем замены производных в дифференциальном уравнении и в граничных условиях или в уравнениях теплового баланса для элементарных ячеек конечными разностями. Таки.м образом, в методе конечных разностей отправной точкой для получения приближенного решения является дифференциальная краевая задача. Однако искомое поле можно находить и из решения соответствующей вариационной задачи. На ее численном решении основан получивший широкое распространение метод конечных элементов (МКЭ) [7, 27].  [c.128]

Для определения стационарных или нестационарных температурных полей, обусловленных тепловыми воздействиями на конструкцию, на второй стадии проводится решение соответствующих краевых задач теплопроводности. Из-за перечисленных выше сложностей, имеющих место и в этом случае, решение данных задач также проводится численно. Наиболее удобен и эффективен в этом отношении метод конечных элементов, позволяющий на одном и том же представлении расчетной области определять и температурные поля, и напряжения [9].  [c.256]

В инженерной практике чаще всего нет необходимости определять степень вулканизации материала в большом числе точек по сечению изделия и достаточно выбрать наиболее ответственные участки, различающиеся глубиной протекания процесса вулканизации. Это приводит к возможности формулировки нестационарных задач теплопроводности с одномерным потоком теплоты, решаемых в ортогональных системах координат, связанных с характерными линиями теплового потока и изотермами для данного изделия. При значительной же изменчивости геометрии этих линий за период нагрева или охлаждения изделия целесообразно обратиться к средствам решения плоских и пространственных задач и выбору соответствующих сеточных схем или метода конечных элементов.  [c.190]


Следует отметить, что метод конечных элементов вносит ряд дополнительных преимуществ в расчет температурных напряжений. Последовательная методология конечно-элементного анализа задач теплопроводности пригодна для расчета распределения температуры в конструкции. Основные идеи расчета стационарных задач теплопроводности методом конечных элементов излагаются в разд. 5.4. В работах [3.7, 3.8] описывается более подробно применение метода конечных элементов в этой области, не связанной непосредственно с расчетом конструкций, включая решение нестационарных задач теплопроводности. Имеется возможность применить одну и ту же программу общего назначения, реализующую метод конечных элементов, как для расчета температур, вызванных тепловым потоком, так и температурных напряжений, возникающих из-за наличия температурного поля. Кроме того, в тех случаях, когда свойства материала зависят от температуры, можно задать характеристики для каждого элемента в зависимости от значения температуры в элементе.  [c.90]

Описанный алгоритм решения реализуется для самых разнообразных задач, включая задачи теории упругости и теплопроводности. Метод конечных элементов в обычной постановке предполагает решение задачи теории упругости в перемещениях, при этом неизвестными, подлежащими, определению, являются перемещения узловых точек. Уравнения равновесия разбитой на элементы конструкции под действием внутренних и внешних сил представляют собой систему линейных алгебраических уравнений, причем все силы приводятся к узловым точкам, а соотношение между узловыми силами и перемещениями представляется матрицей жесткости.  [c.10]

Эти подпрограммы должны составляться пользователем для конкретной задачи. При формировании матрицы происходит обращение к ним с текущими координатами ХС, Y центра элемента (для ААА) или центра стороны элемента (для ВВВ). Прием, аналогичный описанному, использовался в главе 3 при решении одномерной задачи теплопроводности методом конечных разностей. Напомним, что при выводе уравнений МКЭ мы считали свойства и мощности постоянными в пределах элемента, поэтому в случае разрывных функций желательно, чтобы линии разрыва совпадали с границами элементов.  [c.151]

Точное аналитическое решение линейной или предварительно линеаризованной многомерной задачи нестационарной теплопроводности удается получить лишь для элементов конструкций сравнительно простой геометрической формы, ограниченных координатными поверхностями в какой-либо одной системе ортогональных координат. Для большинства таких тел известна и табулирована [42, 56] система собственных функций и спектр собственных значений соответствующей однородной задачи. Поэтому для подобных тел удобно использовать достаточно универсальный метод конечных интегральных преобразований. При однородных граничных условиях и одинаковой во всех точках тела начальной температуре решение многомерной задачи для тел простой формы удается представить в виде произведения решений соответствующих одномерных задач [42, 55].  [c.203]

В теплотехнических расчетах наружных ограждений зданий большое значение имеет уравнение (4) для расчета температурного поля в ограждении, что бывает необходимо, если в ограждении есть теплопроводные включения (элементы железобетонного или стального каркаса, ребра в трехслойных стеновых панелях и пр.). Задача решается интегрированием уравнения (4) в конечных разностях, что дает хорошие результаты с достаточной для практических целей точностью. Метод конечных разностей применяется также и для решения уравнения (1). Решение дифференциальных уравнений теплопроводности в конечных разностях изложено в главах IV и V.  [c.14]


Наиболее эффективными методами решения задач теплопроводности G развитием цифровой и аналоговой вычислительной техники становятся численные методы, с помощью которых для заданных численных значений аргументов получаются численные значения искомой функции. К ним относятся метод конечных разностей, метод прямых, метод конечных элементов. Последний, являясь одним из перспективных методов, завоевывает все большее признание, однако широкого распространения пока еще не получил, хотя работа по внедрению его в практику решения задач теории поля в настоящее время ведется довольно интенсивно. В частности, в ИПМаш АН УССР такая работа проводится в направлении использования метода конечных элементов для решения задач теплопроводности и термоупругости на универсальных цифровых, аналоговых и гибридных вычислительных машинах. В данной работе уделим основное внимание лишь методу конечных разностей и методу прямых.  [c.70]

Более современный подход к разработке математической модели теплового режима изложен в [4]. Основной акцент сделан на анализ аналитических решений [39] и применение интегральных преобразований для решения уравнений стационарной и нестационарной теплопроводности. Авторами [4] разработаны методы решения одно- и многомерных задач, приведены программы, реализующие основные алгоррггмы, оценивается сходимость численных методов, включая и метод конечных элементов, изложенный в [28]. Анализ работы [49] позволяет сделать вывод, что на основе общего подхода для каждой сложной задачи, какой является задача теплового режима, необходимо, используя особенности объекта исследования, конструировать собственную методику, удовлетворяющую поставленным целям и требованиям разработки.  [c.79]

Из численных методов, используемых при решении задач теплопроводности, обычно используется метод конечных разностей. Такое наз1вание метода связано с тем, что в этом случае раосмат-рн вае мая непрерывная область разбивается на конечное число дискретных элементов, для которых записываются разностные уравнения, основанные на законе сохранения энергии, которые позволяют шязать температуру каждого из рассматриваемых эле-меатов с температурами соседних элементов.  [c.25]

В настоящее время, когда прогресс в двигателестроении уже помыслим без подробного исследования теплового и напряженно-деформированного состояния деталей двигателей, инженеры-энер-гомашиностроители начали широко использовать численные методы анализа, среди которых наибольшую популярность приобрел метод конечных элементов. МКЭ оказался особенно удобным благодаря тому, что позволяет строить алгоритмы решения задач теплопроводности и термоупругости для сложных континуальных объектов на основе единого подхода.  [c.3]

Идея МКЭ и алгоритм решения задачи о напряженно-деформированном состоянии с помощью МКЭ демонстрируются в гл. 1 на примере элементарных задач об осевой деформации стержня. Далее МКЭ излагается в гл. 2—6 применительно к задачам теплопроводности и термоупругости, причем выбор рассматриваемых в книге типов конечных элементов обусловлен конфигурацией таких подлежащих исследованию деталей тепловых двигателей, как поршни и цилиндровые втулки дизелей различного назначения. Параллельно с изложением алгоритма МКЭ демонстрируются реализующие эти алгоритмы программные модули комплекса, созданного автором и предназначенного специально для расчета деталей тепловых двигателей. Программы и программные комплексы записаны на языке Фортран, так что книга предполагает знакомство читателя с этим алгоритмическим языком. В книге большое внимание уделено вопросам рационального использования всех ресурсов ЭВМ и эффективной организации всего процесса вычислений при решении больших по размеру прикладных задач приводятся программы вычисления матриц жесткости, инвариантные к виду конечного элемента. В 1л. 7—8 приводится компактная схема организации формирования глобальной матрицы системы уравнений МКЭ, подробно излагаются приемы организации исходных данных, опыт реализации с использованием периферийной памяти схем метода Холецкого и метода сопряженных градиентов для решения больших систем уравнений МКЭ, С помощью разработанных программных комплексов автором выполнены исследования температурных полей и напряженно-деформированного состояния ряда деталей тепловых двигателей. Результаты этих исследований приведены в гл. 9—10 книги. В. Н. Николаевым написан п. 5 гл. 9, гл. 10 — совместно с канд. техн. наук М. В. Се-менченко.  [c.4]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]



Смотреть страницы где упоминается термин Метод конечных элементов для решения задач теплопроводности : [c.136]    [c.148]    [c.207]    [c.170]    [c.85]    [c.10]    [c.102]    [c.381]   
Смотреть главы в:

Применение ЭВМ для решения задач теплообмена  -> Метод конечных элементов для решения задач теплопроводности



ПОИСК



Алгоритм решения задач нестационарной теплопроводности методом конечных элементов

Задача и метод

Задача теплопроводности

Задачи и методы их решения

Конечный элемент

МЕТОД Теплопроводность

Махин В.В. Реализация метода конечных элементов на ЭЦВМ для решения осесимметричной нелинейной нестационарной задачи теплопроводности

Метод конечных элементов

Методы решения задач теплопроводности

Решение нестационарной задачи теплопроводности методом конечных элементов

Решения метод



© 2025 Mash-xxl.info Реклама на сайте