Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частные первые интегралы

Частные первые интегралы  [c.491]

Здесь речь идет о частном первом интеграле. (Прим. перев.)  [c.182]

В дальнейшем будет рассмотрен способ получения первых интегралов дифференциальных уравнений движения точки из так называемых общих теорем динамики в некоторых частных случаях движения точки.  [c.234]

Интегрирование системы нелинейных дифференциальных уравнений (14) и (15) при общих начальных условиях (16) — задача чрезвычайно трудная. Она в общем случае начальных условий не решена даже тогда, когда внешними силами являются только сила тяжести самого тела и реакция закрепленной точки. Для тяжелого твердого тела, вращающегося вокруг неподвижной точки, в трех случаях была указана система первых интегралов дифференциальных уравнений, из которых неизвестные углы Эйлера в зависимости от времени определяются в квадратурах, т. е. путем вычисления интегралов. Эти частные случаи называют случаями интегрируемости уравнений Эйлера.  [c.481]


В дальнейшем мы будем рассматривать только такие системы, гамильтониан которых является одним из первых интегралов (при этом он не обязательно должен быть полной энергией). Поэтому мы можем ограничиться рассмотрением лишь тех канонических преобразований, которые осуществляются функцией, определяемой соответствующим дифференциальным уравнением в частных производных. Разделение переменных, которое мы имеем в виду, удается произвести тогда, когда решение вида  [c.312]

Здесь к определению в квадратурах оо решений системы (34 ), (35 ) и, следовательно, оо движений тяжелого твердого тела, закрепленного в одной своей точке, мы придем уже не путем добавления к интегралам живых сил и моментов нового частного интеграла, а, придавая частное значение произвольной постоянной в одном из этих двух классических первых интегралов, а именно в интеграле моментов количеств движения, найдем, что посредством полученных  [c.171]

Определение частных решений, если известны первые интегралы или инвариантные соотношения  [c.323]

Надо заметить, что, в то время как для гамильтоновой системы уравнение Н=1 является первым интегралом, в котором произвольная постоянная имеет частное значение (интеграл обобщенной энергии), равенство й = 1, которое мы присоединили, не будет первым интегралом для лагранжевой системы.  [c.368]

Любое решение уравнения (10) принято называть множителем. Справедливо следующее утверждение частное двух множителей является первым интегралом системы (1).  [c.317]

Для того чтобы можно было надеяться получить из двух первых интегралов много или даже все первые интегралы, недостающие для построения общего интеграла, надо, чтобы хотя бы один из двух известных исходных первых интегралов был характерен для рассматриваемой частной задачи, чтобы он как можно полнее отражал физическую сущность именно данной задачи. Если за исходные первые интегралы брать интегралы, вытекающие из основных, общих для всех систем теорем динамики, то вряд ли в общем случае можно надеяться на эффективное применение теоремы Якоби-Пуассона.  [c.337]

На практике лагранжианы, гамильтонианы и первые интегралы редко зависят от времени, поэтому принято всегда ассоциировать существование интеграла с инвариантностью гамильтониана (хотя, строго говоря, как мы видели, это не совсем оправдано). Эта трактовка восходит к Ли. Изложенной только что теоремы точно в том виде, как она здесь дана, сам Ли не формулировал, поскольку оперировал, главным образом, не с обыкновенными дифференциальными уравнениями в канонической форме, а с некоторым тесно связанным с ними уравнением в частных производных, к изучению которого мы приступаем в следующей теме.  [c.138]


Мы введем для определенности следующие термины интегралы обыкновенных дифференциальных уравнений мы будем называть интегралами или интегральными уравнениями, интегралы же уравнений в частных производных— решениями. Далее, для системы дифференциальных уравнений мы будем различать интегралы и интегральные уравнения. Интегралами пусть будут те первые интегралы, которые имеют форму функция от координат и их производных равна постоянной, и ее производная при использовании данной системы дифференциальных уравнений обращается тождественно в нуль без помощи других интегралов интегральными уравнениями называются все остальные интегралы. Таким образом принципы живой силы н площадей дают в этом смысле интегралы, а не интегральные уравнения.  [c.6]

Величина ) здесь не зависит от г и равна удвоенной угловой скорости вращательного движения. Аналитически соотнощение (11.3) является следствием системы уравнений первого порядка с частными производными D = О и легко получается из первых интегралов этой системы.  [c.31]

Теоремы Бернулли. Уравнением Бернулли обычно называют один из первых интегралов уравнений движения ). В зависимости от частных динамических или кинематических предположений относительно характера движения это уравнение принимает различные формы, одиако во всех случаях основную роль играет величина  [c.54]

Ограничение содержания аналитической динамики изучением методов решения уравнений движения, нахождением инвариантных соотношений и постоянных движения. Эта тенденция сложилась потому, что весьма эффективными стали методы получения первых интегралов при известном полном интеграле соответствующим образом составленного уравнения в частных производных, например, уравнения Гамильтона—Якоби. К тому же условия каноничности преобразований, составленные для произвольно выбранного гамильтониана преобразованной системы могут привести к интегрируемым уравнениям относительно производящей функции, с помощью которой определяются в дальнейшем первые интегралы канонических уравнений движения. Усилению этой тенденции способствует, причем весьма действенно, всевозрастающее внедрение ЭВМ в учебный процесс.  [c.43]

Ограничение содержания аналитической динамики изучением непрерывных групп преобразований, по отношению к которым известные динамические показатели движения механической системы являются инвариантными показателями. Эта тенденция вызывается тем, что с помощью бесконечно малых преобразований, оставляющих действие по Гамильтону инвариантным до дивергенции, можно получить первые интегралы канонических уравнений, используя теорему Нетер. А канонические преобразования с заданным гамильтонианом преобразованной системы, как уже было отмечено, позволяют составить уравнения в частных производных, полный интеграл которых определяет искомые первые интегралы. Усилению этой тенденции способствует еще и возможность интерпретации самого движения механической системы как последовательность бесконечно малых преобразований координат и импульсов системы.  [c.43]

Законы Ньютона. Принцип относительности Галилея. Дифференциальное уравнение движения точки в инерциальной системе отсчета. Две задачи динамики точки. Начальные условия. Первые интегралы уравнений движения точки. Частные случаи движения точки, допускающие сведение интегрирования уравнений движения к квадратурам.  [c.33]

В приложении 1 рассмотрена задача о движении твердого тела около закрепленной точки в ньютоновском поле сил. Результаты этого приложения частично использованы в главах 1, 2 для объяснения гравитационных эффектов в движении спутников. Эта задача имеет и самостоятельный интерес. Здесь содержится постановка задачи, указаны ее первые интегралы и интегрируемые случаи дан анализ устойчивости частных решений (постоянных вращений) и исследованы некоторые движения, в которых легко усматриваются эффекты, вызываемые возмущающим действием ньютоновского поля сил.  [c.16]


Теорема об изменении кинетического момента позволяет в некоторых частных случаях получить первые интегралы основного уравнения динамики. Наибольший интерес представляет  [c.209]

Рассмотрим некоторые частные случаи, когда первые интегралы системы канонических уравнений (74) могут быть получены непосредственно.  [c.518]

Метод Остроградского. Задачу об отыскании 25 первых интегралов дифференциальных уравнений канонической системы (74) можно свести, как показал Остроградский, к задаче об определении полного интеграла некоторого уравнения в частных производных первого порядка.  [c.520]

Помимо указанных в теории движения тяжелого твердого тела около неподвижной точки существуют еще несколько случаев, когда справедливы алгебраические частные первые интегралы. Тогда можно рещить задачу, получив закон движ ения посредством квадратур.  [c.494]

Метод Остроградского — Якобн позволяет свести задачу об отыскании 2s первых интегралов дифференциальных уравнений кано-иической системы (132.5) к задаче определения полного интеграла некоторого уравнения с частных производных первого порядка.  [c.382]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Каждому первому интегралу уравнений (II. 379) соответствует частное решение уравнений в вариациях (П.381Ь), если уравнения (11.379)—канонические уравнения динамики.  [c.387]

Если известны 2га независимых первых интегралов системы (87), то нахождение решения уравнения в частных производных (84) не представлдет особых трудностей [12].  [c.39]

Рассматривая частные случаи течения жидкости, Лагранж пришел к важной теореме о сохранении безвихревого движения идеальной баротропной жидкости в поле консервативных сил Для безвихревого движения идеальной жидкости он нашел один из первых интегралов движения, позже обоб-ш енный Коши и получивший имя внтетрала Лагранжа — Коши  [c.189]

На протяжении XVIII—XIX столетий были составлены различные варианты дифференциальных уравнений задачи п тел, установлены методы их редукции посредством найденных первых интегралов, изучены частные решения, указаны приближенные методы решения задачи с помощью рядов, рассмотрены вопросы устойчивости соответствующих систем дифференциальных уравнений, предложены качественные методы изучения задачи. Созданная на рубеже XIX и XX столетий качественная теория дифференциальных уравнений открыла новые возможности в исследовании проблемы п тел, которые в значительной степени реализованы в трудах ученых XX в.  [c.87]

В связи с тем, что в случаях Лиувилля и Штеккеля возможность решения задачи в квадратурах связана с существованием квадратичного относительно обобщенных скоростей первого интеграла, были предприняты исследования условий, при которых динамические уравнения движения системы допускают подобные интегралы. В этом направлении в конце XIX в. ряд результатов получили Г. Пирро, П. Пенлеве, Т. Леви-Чивита Ж. Адамар 103 и П. Бургатти нашли новые случаи интегрируемости уравнений движения материальной системы (при наличии квадратичных относительно обобщенных скоростей первых интегралов), из которых ранее известные вытекают как частные случаи. Однако до настоящего времени не доказано, что эти случаи интегрируемости явля10тся самыми общими. Работы на эту тему появлялись  [c.103]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


Эти девять кинематических уравнений (они называются обобщенными уравнениями Пуассона) вместе с тремя динамическими уравнениями Эйлера (14.60) составляют полную систему дифференциальных уравнений движения ИСЗ относительно центра масс. В этих уравнениях 1х> 1у, г и ц — известные постоянные величины, R и со — в общем случае известные функции времени, определяемые из кеплерова движения центра масс спутника, Q . Р > Yft (k=, 2, 3) —искомые функции времени. Не останавливаясь на методах решения этих уравнений (в общем виде они решаются только для частных случаев), заметим, что шесть первых интегралов нам известны —это равенства (14.56).  [c.339]

В гамильтоновой механике особую роль играют группы симметрий, порождаемые гамильтоновыми системами если функции Я и F находятся в инволюции, то фазовый поток гамильтоновой системы с гамильтонианом F переводит решения уравнений Г амильтона с гамильтонианом Н в решения тех же уравнений. Таким образом, задача о группах симметрий уравнений Гамильтона содержит как частный случай задачу о первых интегралах. Нётеровы симметрии порождаются линейными интегралами F = р - v q).  [c.14]

Здесь FjTj — однородная форма переменных однозначная на римановой поверхности X частного решения zo t), причем Fo t) = = f zo) = onst. Ряд (5.4) — интеграл уравнений (5.2). Очевидно, что первая ненулевая форма Г пг 1) является интегралом линейных уравнений в вариациях (5.3). Так как функция jF постоянна на решениях (5.3), то при каждом to X однородная форма Fm( , to) инвариантна относительно действия группы монодромии Fm(T ,io) = Fm h), Т е G. Это свойство налагает жесткие ограничения на вид первых интегралов если группа G достаточно  [c.359]

Рассмотрим частный случай механической системы, когда функция Гамильтона не содержит времени в явном виде. В этом случае одним из первых интегралов будет интеграл энергии Я = сопз1 = Ао. Предположим, что известен второй интеграл ка ионической системы, содерж ий время t в явном виде  [c.528]


Смотреть страницы где упоминается термин Частные первые интегралы : [c.499]    [c.95]    [c.215]    [c.338]    [c.120]    [c.169]    [c.430]    [c.239]    [c.149]   
Смотреть главы в:

Основы теоретической механики  -> Частные первые интегралы



ПОИСК



Интегралы первые

К п частный

Определение частных решений, если известны первые интегралы или инвариантные соотношения

Первый интеграл частный

Первый интеграл частный

Поиск частных, первых и общих интегралов заданной аналитической структуры обыкновенных дифференциальных уравнений на ЭВМ. Приложение к ограниченной задаче трех тел

Частный интеграл



© 2025 Mash-xxl.info Реклама на сайте