Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инструменты из легированной стали - Термическая

Инструментальные легированные стали после соответствующей термической обработки выдерживают в процессе резания температуру нагрева до 250—300°, что дает возможность инструменту, изготовленному из этих сталей, работать на более высоких режимах резания. Инструмент из легированных сталей может работать на скоростях резания примерно в 1,2—1,4 раза больших по сравнению со скоростями резания, допускаемыми инструментом из инструментальных углеродистых сталей.  [c.14]


Накатные инструменты изготовляют из легированных сталей, обрабатывают термически и подвергают довод е.  [c.590]

Необходимую для инструмента твердость углеродистая сталь (так же, как легированная и быстрорежущая) приобретает после закалки и последующего отпуска. Эта термическая обработка производится после изготовления инструмента. Твердость инструмента из углеродистой стали после термической обработки составляет НЯС 62—65.  [c.11]

Для уменьшения деформации, возникающей при закалке в результате структурных и термических напряжений, рекомендуется применять ступенчатый нагрев (подогрев до 600—650° С). Для охлаждения применяют воду и водные растворы, масло, расплавленные соли и щелочи ( светлая закалка). Охлаждение в горячих средах при температуре 150—180° С значительно снижает деформацию и позволяет получить более высокие механические свойства при отсутствии трещин. Такое охлаждение рекомендуется для инструмента из углеродистой стали сечением до 10—12 мм, из легированной — до 18 мм. Крупный инструмент из углеродистой стали охлаждают, как правило, в воде с переносом в масло (при температуре точки масло применяют для охлаждения крупного инструмента из легированной стали. Измерительный инструмент повышенной точности целесообразно после закалки подвергать обработке холодом при температурах минус 70° С (для легированных сталей).  [c.299]

Типовые режимы термической обработки режущего и измерительного инструмента из легированной стали  [c.209]

Быстрорежущие стали. Особенностью быстрорежущих сталей является высокая твердость (до HR 65), красностойкость (до 600° С) и способность в случае перегрева восстанавливать режущие свойства после охлаждения на воздухе. Эти свойства достигаются благодаря легированию вольфрамом (до 18%) и хромом (до 4%). Инструменты из быстрорежущей стали подвергают термической обработке — закалке и отпуску. Закалка заключается в нагреве до 1230—1260° С, выдержке до 2 мин и быстром охлаждении в масле. Режим отпуска нагрев до 550° С, выдержка до 90 мин и медленное охлаждение на воздухе (или вместе с печью). Отпуск осуществляют троекратно. Благодаря отпуску структура металла, полученная после закалки (мартенсит), стабилизируется, снимаются внутренние напряжения, инструмент приобретает высокие режущие свойства.  [c.191]

Дальнейшее улучшение режущих свойств легированной инструментальной стали достигается путем повышения количества вольфрама, ванадия и хрома. Если в хромовольфрамовой стали количество вольфрама довести до 11 —19 /о и ввести хрома от 3 до 5%, то инструмент, приготовленный из такой стали, после соответствующей термической обработки значительно превосходит по своей производительности инструментальную сталь всех рассмотренных выше марок. Такая хромовольфрамовая сталь носит название быстрорежущей. Термическая обработка инструмента из быстрорежущей стали, придающая ему высокие режущие свойства, состоит из закалки и отпуска.  [c.12]


Твердость инструмента зависит от рода режущего материала и состояния термической обработки. Инструменты из быстрорежущей стали имеют твердость Я/ С 62—65 независимо от типа инструмента. Для мелких инструментов она может быть понижена на одну —две единицы. Для инструментов из углеродистой и легированной стали твердость HR 59—62. Хвостовики концевых инструментов, корпуса сборных инструментов изготовляются твердостью Я/ С 30—40.  [c.24]

Термическая обработка инструмента из быстрорежущих сталей состоит из закалки с последующим двух- и трехкратным отпуском. Нагрев под закалку производится до температуры 1260—1300° С с целью растворить в аустените возможно больше легированных карбидов. В процессе закалки не весь аустенит превращается в мартенсит. Часть его за счет большей устойчивости, вызванной легированием, остается неразложившейся и присутствует в стали в виде остаточного аустенита. Поэтому микроструктура закаленной быстрорежущей стали состоит из первичного мартенсита, остаточного аустенита (до 30%) и сложных карбидов (до 16%) при ННС 62—64. Вследствие малой теплопроводности быстрорежущей стали нагрев ее под закалку ведется с предварительным подогревом во избежание появлений больших термических напряжений и образования трещин в инструменте. Применяется двухступенчатый подогрев при температурах 400 —500° С (электропечь) и 840 —860° С (соляная ванна), либо трехступенчатый  [c.69]

После термической обработки инструмент из быстрорежущих сталей имеет твёрдость HR 62—63 и может работать при скоростях резания в 2- раза выше, чем инструмент, изготовленный из инструментальной стали. Увеличение в быстрорежущей стали содержания ванадия и дополнительное легирование кобальтом значительно повышает ее твердость, теплостойкость и тем самым — износостойкость, М р быстрорежущих сталей и их химический состав приведены в  [c.190]

Инструментом для накатывания резьб являются винтовые и кольцевые ролики, плоские плашки и резьбовые сегменты для накатывания шлицевых валов — накатные головки, зубчатые ролики и рейки для накатывания зубчатых колес — накатные зубчатые валки и рейки. Накатной инструмент изготовляют из легированных сталей, термически обрабатывают и после этого подвергают доводке. Винтовые резьбонакатные ролики имеют многозаходную резьбу с направлением подъема, противоположным накатываемой нитке, и профилем, соответствующим профилю впадин изготовляемой резьбы. Кольцевые резьбонакатные ролики имеют кольцевую нарезку, заборную и калибрующую части. Они работают на перекрещивающихся осях под углом, соответствующим углу подъема  [c.627]

В США с каждым годом растет выпуск сталей повышенной производительности группы М40 по национальному стандарту. Эти стали применяются, в первую очередь, для обработки высоколегированных сплавов титана и термически обработанных легированных сталей, высокая твердость которых исключает применение инструментов из быстрорежущих сталей обычной производительности.  [c.155]

Типовые режимы термической обработки инструментов, изготовляемых из легированных сталей  [c.307]

Некоторые легирующие элементы, такие, как вольфрам, значительно повышают износоустойчивость стали, что крайне необходимо для улучшения качества инструмента. Режущие инструменты, изготовленные из инструментальных легированных сталей, должны термически обрабатываться.  [c.20]

Изложены основные сведения по производству стальных труб холодной прокаткой и особенности изготовления труб из легированных сталей. Рассмотрены основы теории прокатки, способы и технология холодной прокатки труб, а также основные типы и конструкции станов холодной прокатки труб. Даны необходимые сведения яо технологическому инструменту, подготовке труб к холодной прокатке, термической обработке и отделке труб. Приведены сведения  [c.2]


Развитие технологии термической обработки происходило также во взаимосвязи с применением для различны деталей машин и инструментов систематически увеличивающейся номенклатуры новых марок сталей и сплавов [19, 127, 214, 235, 270]. Достаточно указать, что первые стандарты на качественную сталь (ОСТы 7123 и 7124) включали 9 марок углеродистой стали и 6 марок стали с повышенным содержанием марганца легированные стали охватывали 20 марок. В настоящее время созданы марки сталей и сплавов, удовлетворяющие требованиям каждой отрасли машиностроения для каждой из них разработаны и применяются свои режимы термической обработки и специфическое оборудование. В отечественном машиностроении применяются стали и сплавы более чем по 30 ГОСТам. Например, по ГОСТу 4543-61 сталь легированная конструкционная имеет около 100 марок 14 групп, по ГОСТу 5632-61 стали и сплавы высоколегированные коррозионностойкие, жаростойкие и жаропрочные (деформируемые) 96 марок.  [c.146]

Назначение стали. По сравнению с другими марками быстрорежущей стали марка РФ1 (за исключением кобальтовой стали) является наиболее легированной дефицитными элементами, обладая при этом не более высокими режущими свойствами, чем некоторые менее легированные марки стали. Поэтому сталь РФ1 следует применять в случаях, когда могут быть использованы ее специфические свойства хорошая шлифуемость и большая вязкость. Широкий интервал закалочных температур позволяет успешно изготовлять инструмент из стали РФ1 на заводах, плохо оснащённых печным оборудованием и пирометрией, в этом случае при сравнении с другими менее легированными марками быстрорежущей стали применение стали РФ1 даёт меньший процент термического брака.  [c.464]

В табл. 23—25 приводятся ориентировочные данные по режимам термической обработки инструмента из углеродистой, легированной и быстрорежущей стали.  [c.491]

Улучшение обрабатываемости материалов механической обработкой достигается предварительной термической обработкой заготовок, применением инструмента из твердых сплавов и сверхтвердых материалов, подбором и использованием смазочно-охлаждающих жидкостей, оптимизацией режимов резания, легированием конструкционных сплавов. Например, легирование сталей серой, селеном, свинцом и другими металлами, облегчающими процесс резания. Обработка таких труднообрабатываемых материалов, как жаропрочная сталь и тугоплавкие сплавы, на оптимальных режимах малопроизводительна (см. табл. 31.1). Поэтому детали из этих материалов обрабатывают методами физико-химической обработки.  [c.593]

Цементуемые легированные стали обычно содержат до 0,25— 0,30% углерода. Все цементуемые стали — низколегированные. Они хорошо обрабатываются режущим инструментом, не содержат дефицитных легирующих примесей, дешевы. Для повышения поверхностной твердости и износостойкости детали, изготовленные из этих сталей, подвергают цементации. Отсюда и название этой подгруппы сталей — цементуемые. После цементации и последующей термической обработки детали приобретают твердый износостойкий поверхностный слой при вязкой сердцевине.  [c.168]

Скорость нагрева и время выдержки при температуре нагрева для закалки зависят от химического состава стали и размеров обрабатываемых деталей. Чем больше размеры й сложнее конфигурация закаливаемых деталей или инструмента, тем медленнее происходит нагрев., Чем больше в стали углерода, легирующих элементов, тем менее она теплопроводна. Нагревают детали из высокоуглеродистых и легированных сталей медленно, равномерно и с повышенной выдержкой нагрева. Объясняется это следующим. Поверхностные слои металла, нагретые до более высокой температуры, стремятся расшириться. Внутренние, менее нагретые слои, этому препятствуют. Таким образом, поверхностные слои будут испытывать напряжения сжатия, а внутренние — напряжения растяжения. Величина напряжений зависит от скорости нагрева чем больше скорость нагрева, тем больше разность температур между поверхностью и сердцевиной, а следовательно, и выше напряжение в металле. Величина напряжений должна быть всегда ниже допустимой величины, в противном случае в изделии при нагреве могут образоваться трещины. Выдержка при термической обработке необходима для того, чтобы изделия полностью прогрелись после достижения заданной температуры и чтобы произошли структурные превращения в металле. Время выдержки зависит в основном от структуры-металла и равно 1 мин для углеродистых сталей и 1,5—2,0 мин для сталей легированных на 1 мм диаметра.  [c.30]

В процессе термической обработки деталей или инструмента из легированных сталей могут возникнуть дефекты и брак. Основными дефектами (например, при закалке быстрорежущей стали) могут быть закалочные трещины, недогрев и пе-регмв.  [c.41]

Среди марок инструмента 1ьной легированной стали большое значение имеет группа сталей, для которых характерна малая деформация при закалке. Не подвергаемый шлифованию после термической обработки инструмент, от которого требуются очень точные размеры, изготовляется из хромомарганцевольфрамовой стали ХВГ (к таким инструментам относятся длинные развертки, метчики, протяжки, многие обрезные штампы, дыропробивные пуансоны, инструмент для накатки резьбы, калибры, измерительный инструмент).  [c.371]

Отпуск. При многократном отпуске из остаточного аустенита выделяются дисперсные карбиды, легированность аустенита уменьшается, и он претерпевает мартенситное превращение. Обычно применяют трехкратный отпуск при 550-570 °С в течение 45-60 мин. Режим термической обработки инструмента из быстрорежущей стали Р18 приведен на рис. 6.2. Число отпусков может быть сокращено при обработке холодом после закалки, в результате которой уменьшается содержание остаточного аустенита. Обработке холодом подвергают инструменты сравнительно простой формы. Твердость после закалки НЕСэ 62-63, а после отпуска она увеличивается до НКСэ 63-65.  [c.389]


Термическая обработка инструмента из быстрорежущей стали представляет собой закалку и трехкратный отпуск. Закаливают быстрорежущую сталь с высокой температуры (для стали Р18 — 1260 1300°С, для Р9—1220-м260°С) для того, чтобы обеспечить повышенную легированность аустенита, а после закалки — мартенсита.  [c.118]

Газовому цианированию подвергают изделия сложной конфигурации из конструкционной углеродистой, низко-и среднелегированной сталей, а также инструмент из быстрорежущей стали. Для конструкционной углеродистой и легированной стали гшименяют высокотемпературное газовое цианирование при 800—82о° С с целью повышения твердости и износостойкости, а для быстрорежущей стали — низкотемпературное цианирование при 540—560° С с целью повышения режущих свойств и стойкости инструмента. После газового цианирования производят закалку и низкотемпературный отпуск. Газовое цианирование (иногда называемое нитроцементацией) является одним йз совершенных и широко распространенных видов химико-термичесКой обработки.  [c.186]

Инструментальные легированные стали со держат дополнительные легирующие элементы (присадки хрома, молибдена, ванадия и др.). После соответствующей термической обработки инструмент из этих сталей в процессе резания выдерживает нагрев до температуры 250—300 °С, что позволяет увеличить скорости резания примерно в 1,2—1,4 раза по сравнению со скоростями для инструмента из инструментальных углеродистых сталей. Химический состав инстру метальных легированных сталей, их группы и марки устанавливает Г ]Т 5950—73, Для изготовления режущего инструмента наиболее часто используют стали хромокремнист 9ХС, хромовольфрамовую ХВ5 и хромовольфрамомарганцовистую ХВГ,  [c.190]

Цианирование применимо только к режущим инструментам, изготовленным из быстрорежущих сталей. Цианировать режущие инструменты, изгото1вленные из углеродистых или легированных сталей других марок нельзя, так как температура отпуска инструментов из этих сталей ниже температуры цианирования и, следовательно, при цианировании они потеряют свою твердость. Цианирование режущих инструменто(В является последней операцией. Эт значит, что циаиированию подвергаются инструменты, обработанные полностью мехатически и термически.  [c.286]

Изготовление калибров и скоб из цементируемых сталей отличается от рассмотренного технологического процеоса в основном тем, что после предва р ительной механической обработки производится цементация на глубину 1—2 мм (в зависимости от вица инструмента и величины припуска). После цементации производится предварительная закалка с температуры 840—860° в воде с переносом в масло (инструменты, из утаеродистых сталей) или в масле (инструменты из легирован ных сталей). Скобы при закалке погружаются в закалочный бак не полностью, а только своими рабочим1и поверхностям И. Предварительная закалка может быть заменена нормализацией. Предварительный высокий отпуск после нормализации делается лишь в том случае, если инструменты изготовлены из легированной стали, иначе их окончательная механическая обработка будет затруднена. Окончательная закалка производится с температуры 770—790°, В остальном технологический процесс термической обработки инструментов з цементируемых сталей подобен рассмотренному процессу из углеродистых.  [c.290]

Технологический процесс термической обработки калибров и других измерительных инструментов из углеродистых сталей марок УЮА и У12А и из легированных сталей марок X, ХГ и ХВГ состоит из следующих операций  [c.257]

Сочетание высокой твердости эльбора с теплостойкостью, в два раза превосходящей теплостойкость алмаза, и химической инертностью к железу и сплавам на его основе делает эльбор незаменимым при обработке высокотвердых сталей и сплавов, легированных вольфрамом, молибденом, кобальтом, ванадием, которые плохо или совсем не обрабатываются обычными абразивными и алмазными инструментами. Инструмент из эльбора успешно применяется при чистовом шлифовании и заточке инструментов из быстрорежущих сталей, при чистовом тонком шлифовании прецизионных деталей из жаропрочных, нержавеющих и высоколегированных конструкционных сталей HR 64—66), а также при шлифовании деталей из материалов, чувствительных к термическим ударам (литые магниты). Большой эффект достигается при чистовом и тонком шлифовании инструментом из эльбора массовых деталей на станках, работающих в автоматическом и полуавтоматическом циклах (малые отверстия приборных подшипников), при шлифовании направляющих станков и ходовых винтов, при обработке профилей резьбы метчиков, калибров, ходовых винтов, при доводке рабочих поверхностей деталей подшипников из жаропрочной стали ЭИ347 и др.  [c.12]

На рабочих поверхностях инструментов не допускаются прижоги, поджоги или цвета побежалости. Твердость инструмента, характеризующая правильность его термической обработки, контролируют на твердомере—приборе Роквелла по шкале С. Инструменты из углеродистой и легированной стали после правильной термической обработки имеют НРС 58—64, а инструменты из быстрорежущей стали — НРС 63—65.  [c.27]

Основные видь1 термической обработки инструментов из инструментальных сталей — отжиг, закалка и отпуск. Отжиг снижает твердость и этим облегчает механическую обработку. Отжигают обычно литые, кованые, сварные и наплавленные заготовки. Закалка повышает механические свойства инструмента и состоит из нагрева, выдержки при высокой температуре и охлаждения. Процесс нагрева состоит из одного-двух предварительных подогревов и окончательного нагрева. Предварительные подогревы обеспечивают постепенное и равномерное нагревание инструмента, что устраняет появление трещин и деформаций и снижает глубину обезуглероженного слоя. После закалки инструменты подвергают отпуску. У углеродистых и легированных сталей отпуск снимает внутренние напрян<ения, а у быстрорежущих (аустенитного класса) повышает твердость вследствие превращения остаточного аусте-нита в мартенсит.  [c.16]

Инструмент из углеродистой и легированной стали г я закалки нагревают на 50—80 С выше Лс . Ох-i- дение углеродистых сталей проводят в воде (в раст-,ре Na l в воде), а легированной стали в масле или расплавах солей при 160—240 °С (ступенчатая закалка). Режим термической обработки инструмента из быстрорежущей стали приведен на рис. 100.  [c.265]

Режущую способность инструментальной углеродистой стали можно повысить введением в нее легирующих элементов (присадок) — хрома, вольфрама, молибдена, ванадия и др. Стали с такими присадками называются легированными. После соответствующей термической обработки эти стали выдерживают в процессе резания нагрев до температуры 250—300° С, что позволяет инструменту, изготовленному из этих сталей, работать при скоростях, примерно в 1,2—1,4 раза больших по сравнению со скоростями резания, допускаемыми инструментом из инструментальных углеродистых сталей. Химический состав инструментальных легированных сталей, их группы и марки устанавливаются ГОСТ 5950—73. Для изготовления режущего инструмента наибольшее применение находят стали хромокремнистая 9ХС, хромовольфрамовая ХВ5 и хромовольфрамомарганцовистая ХВГ.  [c.8]


Поскольку изобутилен относится к углеводородам с высокой реакционной способностью, резервуары для его хранения должны быть герметичны и свободны от воздуха, влаги и грязи. Перед заполнением их рекомендуют продувать азотом для удаления кислорода. Изготовлять резервуары можно не только из легированных, но и из обычных углеродистых сталей, которые практически также не корродируют в жидком изобутилене. Перед включением резервуара в работу окалину и ржавчину рекомендуется удалять, так как следы жедеза в мономере снижают его качество. Для предохранения внутренней поверхности резервуаров от коррозии парами воды и другими примесями, которые могут попасть в изобутилен, рекомендуется применять защитные покрытия. Чтобы снизить температуру изобутилена и его паров, резервуары обычно окрашивают белой или серебристой, т. е. светоотражающей алюминиевой краской. Необходико знать, что лакокрасочные покрытия, содержащие алюминиевую пудру, в пожарном отношении опасны. При ударе о них ржавым стальным инструментом возникает вспышка вследствие мгновенного образования термического очага. Относящиеся к этому вопросу литературные сведения [И] подтверждены опытами, проведенными автором  [c.247]

Неизменяемость формы и размеров при термической обработке. Это свойство важно только для инструментов, профиль зуба которых не шлифуется (например круглые плашки, ручные метчики). Часто это свойство определяет назначение стали для того или иного инструмента. Чем больше масса инструмента, тем больше по величине деформации. В отношении неизменяемостн формы лучшие результаты показывают легированные стали типа ХВГ, ХВСГ и т. д. Наименьшую деформащхю при термообработке дают хромистые стали, наибольшую — углеродистые. Изделия из быстрорежущей стали также несколько меняют размеры при термической обработке, однако обычно их затем шлифуют.  [c.20]

Легированные стали для измерительного инструмента (микрометров, калибров, измерительных плиток и т. д.) должны обладать высокой твердостью, износостойкостью и сохранять размеры в течение длительного времени эксплуатации. Для этого применяют хромистые (X, 13Х) и хромовольфраммарганцевые (ХВГ) стали, содержащие повышенное количество углерода (1,0—1,4%). Для обеспечения стабильности размеров эти стали после закалки подвергают обработке холодом, а затем низкому отпуску при длительной выдержке (12—60 ч). После такой термической обработки измерительный инструмент имеет твердость HR 62—64, Инструмент из листовой хромистой стали (измерительные скобы, шайбы, линейки и другие плоские инструменты) для увеличения твердости и износостойкости рабочей поверхности подвергают цементации и закалке.  [c.199]

На специализированных инструментальных заводах успешно внедряется более прогрессивная технология производства пластическая деформация, штамповка заготовок на ковочных кольцах и прессах в многоручьевых штампах, безокислительный нагрев, непрерывное протягивание и т. д. Здесь механизированы отдельные термические операции и упаковка, имеются поточные линии, широко применяются быстродействующие гидравлические, пневматические и механические приспособления. На специализированных инструментальных предприятиях широко используют синтетические алмазы для заточки и доводки всего вновь изготовляемого и перетачиваемого твердосплавного инструмента. Заточка и доводка такого инструмента алмазными кругами, как показал опыт, позволяет увеличить его стойкость в 2—2,5 раза. Штампы с рабочими элементами из твердых сплавов служат в несколько раз дольше по сравнению со штампами с элементами из углеродистой и легированной стали. Один твердосплавный камнеобрабатьшающий инструмент до полной его амортизации заменяет 200—300 заправок аналогичного стально-  [c.99]


Смотреть страницы где упоминается термин Инструменты из легированной стали - Термическая : [c.167]    [c.92]    [c.352]    [c.2]    [c.165]    [c.144]    [c.14]    [c.339]    [c.172]    [c.252]    [c.87]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Легированные стали —

Термическая стали

Термические инструментов из легированной стали Режимы

Типовые режимы термической обработки режущего и измерительного инструмента из легированной стали



© 2025 Mash-xxl.info Реклама на сайте