Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ непосредственным расчетом

Как было указано (см. п. 4.1), математическую основу теории производительности составляют уравнения, связывающие показатели производительности непосредственно с технологическими, конструктивными, структурными и эксплуатационными характеристиками машин и их систем. Метод получения таких аналитических зависимостей состоит в следующем. Для данного конкретного типа оборудования (полуавтоматы и автоматы, автоматические линии, автоматизированные участки с управлением от ЭВМ и др.) выделяют группу параметров, которые в данном случае являются предметом анализа или расчета xi, х ,. .., л ,,). Затем путем инженерного анализа отыскивают частные функциональные зависимости всех элементов затрат времени (рабочих и холостых ходов внецикловых потерь всех видов) от данных параметров и констант Ai.  [c.76]


Практически, однако, часто бывает удобнее подставлять решение дифференциального уравнения преобразователя непосредственно в (10) с целью выполнения анализа или расчета. Рассмотрим некоторые характерные примеры.  [c.105]

Этап анализа результатов расчета требует квалифицированной оценки, так как от этого зависит выбор решения. Принимаемое решение может быть направлено не на его непосредственную реализацию в конструкции, а на уточнение постановки задачи.  [c.143]

На рис. 97—102 представлены результаты расчетов, выполненных с применением математической модели, в сопоставлении с экспериментальными данными. Следует отметить, что изображенные на рисунках кривые непосредственно построены ЭВМ в виде изолиний, напечатанных устройством печати. Анализ результатов расчетов свидетельствует о хорошем совпадении с данными эксперимента. Математическая модель позволяет с достаточной точностью описать распределение кинематических параметров, контактных напряжений, температурных полей для прокатки в широком диапазоне изменения параметров е, //Яср,  [c.294]

Следовательно, размерный вид связи можно изобразить графически в виде схемы. Для этого нагляднее всего нанести все размеры, связывающие исполнительные поверхности машины или ее механизмов, на контуры тех деталей, которым они принадлежат, или в непосредственной близости от них, как это показано на фиг. 20. Иногда схемы размерного вида связей изображают отдельно, как это сделано на фиг. 21. Однако такое изображение размерных связей теряет наглядность и вносит значительные затруднения в их анализ и расчет.  [c.63]

Выше приведены методики теоретического анализа и инженерного расчета характеристик достоверности контроля параметров образцов продукции по известным характеристикам погрешности измерений при контроле и известным параметрам методики контроля. Иначе говоря, решена задача анализа при известной методике контроля. Но мы все время подчеркивали, что основной является обратная задача — разработка методики контроля, то есть определение допустимой погрешности измерений при контроле и параметров методики контроля по заданным исходным данным, в число которых входят и допустимые характеристики достоверности контроля. При современном состоянии теории синтеза систем не представляется возможным, непосредственно, прямо решать задачу синтеза методик контроля (так же, как и МВИ). Поэтому эту задачу приходится решать итерационным методом на основе изложенной в данной главе методики анализа и расчета характеристик достоверности контроля. Задаваясь допустимыми характеристиками достоверности контроля, возможно, на основании приведенных выше формул и графиков, определить методом подбора необходимые параметры методики контроля и допустимые характеристики погрешности измерений при контроле. Последовательность этапов решения этой задачи, фактически задачи синтеза методики контроля, полностью аналогична последовательности этапов разработки МВИ, описанной в разд. 4.3.2. Таким образом, материал данной главы может быть использован в практике разработки методик контроля параметров образцов продукции. Примеры определения характеристик достоверности контроля приведены в [2].  [c.223]


Одним из простых, но нерациональных способов является непосредственный расчет луча через систему каждый раз, когда требуется получить значение аберраций. Можно сказать, что аберрации в этом способе представлены алгоритмом расчета луча, рассмотренным в гл. 3. Естественно, что при этом затрачивается большое количество излишних действий. Кроме того, программы расчета структуры изображения оказываются связанными с программами расчета луча. Невозможно, например, при помощи этих программ определить качество изображения по экспериментальным данным об аберрациях. Ввиду простоты этот способ можно рекомендовать для одноразовых задач анализа изображения в системах с небольшим количеством поверхностей, когда перечисленные отрицательные факторы не имеют решающего значе-  [c.148]

Расчетные параметры и обменные соотношения. Процесс подготовки к расчету заключается в выборе входных величин параметров и основных переменных, например величины удлинения бака, числа ступеней, величины плотности горючего, материала бака, числа двигателей, характеристик тяги, величины массового расхода и т. д. Расчет состоит в определении подходящего ряда переменных, таких, как размеры бака в каждом сечении, давление в баке и т. д., удовлетворяющих в каждый момент полета условиям, введенным в анализ. Непосредственным выходом вычислительного устройства является величина полного веса и дальности полета летательного аппарата нри желании можно получить величины многих внутренних параметров, например размеры стенок бака,  [c.589]

Первым и вторым законами термодинамики устанавливается существование двух функций состояния — энергии и энтропии. Оба закона формулируют полностью только для закрытых систем, но понятия энергии и энтропии используются более широко, в любых термодинамических системах. Ни энергию, ни энтропию нельзя измерить непосредственно, это вспомогательные физические величины. Нахождение их не является конечной целью термодинамического анализа, однако они позволяют реализовать в принципе уже сформулированные на основе постулатов термодинамики возможности количественного расчета других интересующих свойств равновесных систем.  [c.41]

Схема алгоритма поиска аналогов приведена на рис. 6.1. Реализация этого алгоритма предполагает непосредственное участие проектировщика на таких этапах решения задачи, как задание различных вариантов уступок по требованиям ТЗ, определение входных данных для проведения поверочных и проектных расчетов (при этом проектировщик может руководствоваться общими рекомендациями по выбору этих данных, получаемыми в результате анализа выполненных разработок), выбор аналогов для дальнейшей проработки.  [c.197]

Уравнение состояния реального газа, отражающее все его свойства, как это будет показано ниже (см. 4.9, 4.10) весьма сложно, и непосредственное использование его при исследовании термодинамических процессов связано с большими трудностями. Процесс вычислений значительно облегчают ЭВМ, с помощью которых по сложным уравнениям вычисляют наиболее употребимые параметры состояния с относительно небольшими интервалами их значений. По результатам расчета составляют таблицы термодинамических свойств и строят термодинамические диаграммы, такие, как Гх-диаг-рамма и ей подобные. Таблицы и диаграммы широко используют в анализах и технических расчетах, например, процессов изменения состояния водяного пара (см. 11.6 и гл. XII) и других веществ.  [c.40]

Сложный характер таких зависимостей заставляет расшифровать значения безразмерных коэффициентов, выражать их через первичные параметры (например, Мц, Тц и др.), т. е. по существу, отказываться от их непосредственного использования. Поэтому в теории и практике расчета и анализа производительности более употребительна оценка фактической производительности (с учетом простоев) через так называемые внецикловые потери.  [c.72]

Отметим одну характерную особенность, отличающую вынужденные колебания в рассматриваемой линейной системе с периодически изменяющимися параметрами от колебаний в линейных системах с постоянными параметрами. В нашем случае из-за пульсации параметров каждая гармоника j возмущающей силы способна вызвать колебания с бесконечным числом гармоник, в то время как в линейных системах с постоянными параметрами при этом возбуждается только одноименная гармоника /. Это обстоятельство в известном смысле приближает рассматриваемый класс задач к классу нелинейных. Однако, как показывает анализ, отмеченная связь с чужими гармониками оказывается существенной только непосредственно в резонансных зонах, причем лишь для тех гармоник решения, которым соответствует слабая гармоника возмущающей силы. В остальных случаях указанная особенность обычно слабо проявляется на результатах расчета. Приведенные выше, соображения позволяют записать следующую приближенную зависимость для инженерной оценки амплитуд соответствующих сильных гармоник  [c.272]


При рассмотрении физических явлений и процессов, обусловливающих возникновение отказов деталей и устройств, следует определить оптимальную степень детализации физического анализа, учитывая, что интерес представляют макроскопические характеристики состояния материалов, деталей и устройств. По-видимому, целесообразная степень детализации должна определяться не столько возможностью непосредственного использования физических закономерностей для инженерных расчетов надежности, сколько необходимостью глубокого физического анализа процессов для эффективного решения многих задач исследования и обеспечения надежности конкретных устройств.  [c.39]

Свойства машины с регулятором при резких изменениях нагрузки были предметом многих исследований. Можно сказать, что основы теории регулирования были заложены в трудах И. А. Вышнеградского в 1876—1877 гг. [52]. Машина, находящаяся под нагрузкой, и ее регулятор образуют систему с двумя степенями свободы, если регулирование является прямым (непосредственным). В качестве обобщенных координат Лагранжа обычно выбираются ход втулки регулятора h и угол поворота маховика ф. При расчетах вал принимается абсолютно жестким, так как частота колебаний вала в процессе регулирования бывает значительно ниже частоты собственных крутильных колебаний вала, В основе исследования лежит рассмотрение кинетической и потенциальной энергии регулятора и машины, выраженных через /г и ф. Для большей общности анализа предположим, что кинетическая энергия определяется выражением  [c.375]

Комплексное проведение производственных исследований точности работы действующих автоматических линий, экспериментальных исследований и теоретического анализа должно дать ответы на следующие основные вопросы проектирования технологических процессов производства корпусных деталей на автоматических линиях а) обоснование для выбора технологических методов и числа последовательно выполняемых переходов для обработки наиболее ответственных поверхностей деталей с учетом заданных требований точности б) установление оптимальной степени концентрации переходов в одной позиции, исходя из условий нагружения и требуемой точности обработки в) выбор методов и схем установки при проектировании установочных элементов приспособлений автоматических линий для обеспечения точности обработки г) рекомендации по применению и проектированию узлов автоматических линий, обеспечивающих направление и фиксацию режущих инструментов в связи с требованиями точности обработки д) выбор методов настройки станков на требуемые размеры и выбор контрольных средств для надежного поддержания настроечного размера е) обоснование требований к точности станков и к точности сборки автоматической линии по параметрам, оказывающим непосредственное влияние на точность обработки ж) обоснование требований к точности черных заготовок в связи с точностью их установки и уточнением в ходе обработки, а также установление нормативных величин для расчета припусков на обработку з) выявление и формирование методических положений для точностных расчетов при проектировании автоматических линий.  [c.98]

В заключение отметим, что высокая степень формализации метода структурных чисел делает его непосредственно применимым для программирования задач анализа колебательной системы металлорежущего станка в общем (буквенном) и численном виде на ЭЦВМ. Вместе с тем приведенный алгоритм может быть использован для анализа колебательной системы станка и без привлечения ЭЦВМ, в частности, и потому, что производящему расчет специалисту не приходится задумываться над смыслом очередной операции и выбором следующего шага. Практически ограничения в этом случае связаны с независящей от применяемого метода громоздкостью расчетных формул, составляемых в общем (буквенном) виде. Эти формулы можно упростить, используя аппарат обобщенных чисел [И].  [c.62]

Вместе с тем для анализа опытных данных и их обобщения весьма важно теоретическое рассмотрение отдельных вопросов горения факела жидкого топлива даже при наиболее упрощенной их постановке. Почти во всех расчетах предполагается, что объемная концентрация капель в потоке обычно настолько мала, что можно пренебречь непосредственным взаимным влиянием капель при горении. Имеется несколько  [c.219]

Одно из трудных решений, которые приходится принимать руководству по проведению испытаний, связано с проблемой проводить ли различные виды испытаний, входящие в программу по надежности, в своей фирме или привлекать для этого внешние организации. Непосредственно связанные с этой проблемой экономические факторы нетрудно оценить обычными методами расчетов и анализа, поэтому в дальнейшем рассмотрении их здесь нет необходимости. Однако полезно обсудить многие трудно учитываемые факторы, которые более сложно анализировать и которые часто опровергают или по крайней мере изменяют экономические соображения.  [c.237]

Анализ прочности и ресурса конструкций и машин осуш ест-вляется на последней, четвертой стадии исследования по величинам вычисленных выше деформаций для различных номеров времени с использованием деформационно-кинетических критериев малоциклового разрушения или условных упругих напряжений и расчетных уравнений кривых малоцикловой усталости, В последнем случае оценке прочности и ресурса должна предшествовать обработка напряжений в соответствии с принятой классификацией для мембранных 0 , изгибных o и пиковых 0д, напряжений, определенных с учетом концентрации 0к (см. г л. 2 и 11). Поскольку нормы [2] основываются на расчетах сосудов давления и трубопроводов по теории оболочек, распределение 0(обол) напряжений 0 и 0и в любом из сечений получается непосредственно из расчета (см. рис. 12.1, а).  [c.257]


Циклические ползучесть и релаксация. При выводе уравнений состояния (7.38)—(7.40) игнорировалось различие диаграмм деформирования реономных и склерономных стержней. Получаемая ошибка, малозаметная в каждом этапе нагружения, в определенных условиях может накапливаться. Например, циклическое несимметричное нагружение в соответствии с указанными уравнениями дает замкнутую (неподвижную) петлю пластического гистерезиса фактически часто наблюдается постепенное сползание петли вследствие реономности материала — в зависимости от условий возникают эффекты, называемые циклической ползучестью (задаются напряжения) или циклической релаксацией (задаются деформации). При непосредственном расчете кинетики деформаций в стержнях модели (без использования допущений, принятых при выводе указанных уравнений состояния) эти эффекты находят отражение. Однако можно воспользоваться уже рассмотренными методами анализа (исследование эпюр распределения упругих деформаций) для получения асимптотических решений в общей форме, т. е. определения границ сползания петель гистерезиса, если они существуют, и определения условий, в которых циклическая ползучесть происходит неограниченно (вплоть до ква-зистатического разрушения).  [c.210]

К сожалению, как уже упоминалось, для широкого пользования описан-ньйм методом при расчетах не накоплено достаточного количества опытных данных о параметрах тепловыделения. Предоставление в распоряжение исследователей и конструкторов возможности использовать данные о тепловыделении при анализе и расчете рабочего процесса должно стимулировать их накопление, тем более, что эти данные получаются непосредственным замером или несложной обработкой индикаторных диаграмм.  [c.126]

Сравнительная сложность уравнения (67) и наличие взаимных, в ряде случаев еще недостаточно исследованных связей между некоторыми величинами, входящими в него, не позволяют пока использовать формулу (67) для непосредственного расчета сил Рг+. Вместе с тем достоинством этой формулы является то, что она учитывает не ТОЛ1КО разупрочнение материала, возникающее при нагревании заготовки плазменной дугой, но также и термические напряжения, влияющие на состояние обрабатываемого материала и оказывающие воздействие на процесс стружкообразования, а значит, и на силы В связи с этим анализ формулы (67) позволяет определить направление влияния на того или иного фактора и таким образом выяснить целесообразные пути наладки процесса ПМО в различных случаях. Из формулы (68) следует, что нагрев при ПМО необходимо проводить по-разному для различных групп металлов. Разделим условно все металлы, подвергающиеся обра- ботке с нагревом плазменной дугой, на три группы. Первая из них включает материалы, предел текучести которых ав(0) существенно снижается уже при нагреве до 200...300°С. К этой группе можно отнести стали 22К, 12Х18Н9Т и аналогичные им, а также титановый сплав ВТЗ-1. Вторая группа включает большинство углеродистых и легированных сталей, интенсивное разупрочнение которых начинается с температур порядка 300...400°С. Наконец, третью группу составляют жаропрочные материалы, предел текучести которых 08(0) незначительно меняется до температур 600...700°С. Как уже отмечалось, начало появления пластических деформаций в заготовке зависит от предела текучести обрабатываемого материала при данной температуре. Поэтому для создания временных термических напряжений в материалах третьей группы потребуются более высокие температуры нагрева, чем для материалов первой и второй групп. Жаропрочные сплавы следует обрабатывать в условиях высокотемпературного плазменного нагрева, что подтверждается работами, выполненными в Грузинском политехническом институте, ИЭС им. Е. О. Патона, ЦНИИТМАШе. Исследователи получили яаилучшие результаты при точении заготовок из жаропрочных материалов, нагретых к моменту подхода в зону резания до 700... 900°С. Для достижения столь высоких температур предварительного подогрева применяли два плазмотрона, а также нагрев осциллирующей дугой, что обеспечивало необходимое накопление теплоты в срезаемом слое металла. Значительный разогрев металла вызы-  [c.82]

Анализ таких многоразмерных соединений, в которых необходимо учитывать конструктивные формы рабочих поверхностей, увязку технологических и конструктивных баз и заданную точность работы механизма прибора, требует более сложных размерных расчетов. Последняя задача ставит размерный анализ или расчет допусков размерных цепей в непосредственную связь с расчетом на точность механизмов, теория которых разработана акад. Н. Г. Бруевичем [4].  [c.171]

Для подавляющего большинства практически важных случаев к настоящему времени получены формулы для расчета КИН, С учетом этих формул расчет КИН сводится к предварительному анализу напря-женно-деформированного состояния конструкций с трещиной, схематизации реальней трещины расчетным аналогом, формированию расчетных значений напряжений и непосредственно расчету значения КИН по приведенным в справочниках формулам.  [c.28]

Следует отметить, что процесс развития разрушения (рост трещины) можно представить как непрерывное зарождение макроразрушения (разрушения в объеме структурного элемента) в высокоградиентных полях напряжений и деформаций, возникающих у растущей трещины. Тогда ответственными за развитие разрушения являются по сути все те же локальные критерии разрушения (см. рис. В.1). Таким образом, если не рассматривать тело с трещиной как специфический объект исследований (чем традиционно занимается механика разрушения), а рассматривать трещину как концентратор напряжений, тО анализ развития разрушения в конструкции принципиально не будет отличаться от анализа разрушения в теле без трещины с использованием локальных критериев разрушения. Единственное отличие расчета зарождения разрушения в теле без трещины от расчета развития трещины в элементе конструкции заключается в методе определения НДС в первом случае НДС определяется непосредственно из решения краевой задачи, ва втором — на основании параметров механики разрушения. Очевидно, что это отличие не является принципиальным и связано с менее трудоемким способом расчета НДС у вершины трещины через параметры механики разрушения. В общем случае НДС у вершины трещины можно определить с помощью решения краевой задачи, например МКЭ.  [c.8]

Предложенный в рамках настоящей работы подход к определению направления развития усталостной трещины, хотя и наиболее адекватно отражает физические процессы на микроуровне, в расчетном плане достаточно трудно реализуем. Сложность реализации предложенного подхода в первую очередь связана с необходимостью детализации анализа НДС до масштабов зерна поликристаллического тела. Так, при использовании МКЭ размер КЭ у вершины трещины должен быть порядка размера зерна, что приводит к существенному увеличению разрешающей системы уравнений. Упростить расчетную процедуру можно, используя критерий максимальных растягивающих напряжений Иоффе [435]. В этом случае расчет траектории проводится непосредственно с позиций механики сплошного деформируемого тела, что дает возможность не анализировать НДС до масштаба зерна, а аппроксимировать тело гораздо более крупными КЭ. Хотя критерий Иоффе не учитывает физических особенностей разрушения материала у вершины трещины, расчет по нему дает достаточно хорошее совпадение с экспериментальными результатми по направлению роста трещин усталости [180].  [c.194]


На первом этапе указанного анализа проведены расчетноэкспериментальные исследования ОСН в сварных толстолистовых конструкциях с многопроходными швами. Удобной инженерной схематизацией для расчета ОН в сложных сварных конструкциях является их дифференцирование на собственные и реактивные напряжения. В этом случае" ОСН сварного узла могут быть определены с помощью суперпозиции собственных ОСН, возникающих непосредственно при сварке рассматриваемого узла, и напряжений, действующих от соседних сварных узлов, названных реактивными напряжениями.  [c.326]

В задачу генератора Г входит генерация объектных модулей процедур рабочей программы РП обращения к моделям элементов проектируемого объекта, расчета матрицы Якоби и вектора невязок, прямого и обратного хода алгоритма Гаусса, расчета данных для печати и др. Непосредственно генерации предшествует оптимальная перенумерация переменных математической модели объекта. Генерация объектных модулей производится в соответствии с деле-ннем проектируемого объекта на фрагменты. Такой подход необхо-ДИМ для реализации диакоптических методов анализа и способствует снижению требований к ОП, занимаемой компилятором, так как возникает возможность последовательной обработки фрагментов объекта с сохранением во внутренней БД только необходимого минимума информации о них.  [c.143]

Расчет энергии связи в кристаллах — безусловно, квантово-механическая задача. Тем не менее установлено, что для некоторых типов твердых тел в достаточно хорошем приближении энергия связи может быть определена и на основе классического рассмотрения. К таким относятся кристаллы, распределение зарядов в которых может быть представлено в виде совокупности периодически расположенных точечных зарядов (ионов) или диполей. Возникающие в этих случаях типы связи называют соответственно ионной или ван-дер-ваальсовой (иногда — дипольной). В то же время сведение квантовомеханической задачи к классической оказалось невозможным в случае, когда плотность электронов в межионном пространстве достаточно велика, и электроны нельзя рассматривать как включенные в точечные (или почти точечные) ионы. Методы определения характеристик связи и физических свойств кристаллов с таким распределением электронов основываются непосредственно на квантовой теории (включая квантовую статистику). Анализ показал, что основными типами связи в этих случаях являются металлическая, характеризующаяся в первую очередь отсутствием направленности, и ковалентная, важным признаком которой является направленность. Помимо этого в последние годы выделяют в особый YHn водородную связь, имеющую важное значение при рассмотрении биологических соет динений.  [c.20]

Для хэпределенного рода жидкости коэффициент теплоотдачи при развитом кипении зависит лишь от тепловой нагрузки и давления насыщения. Поэтому для практических расчетов удобно применять эмпирические размерные зависимости. Эти зависимости устанавливаются либо непосредственно из анализа опытных данных, либо на основе обобщенных критериальных формул. Для воды в диапазоне давлений примерно от 1 до 40 бар (р/ркр 0,18, рис. 13-6) получены зависимости [Л. 124, 157]  [c.311]

Кинематический анализ кулачкового механизма обычно ттроиз-водится графически или аналитически. Приближенно можно величину мгновенного перемещения кулачка вычислить непосредственным замером на чертеже или по эквидистантным кривым, вычерченным в достаточно большом масштабе (фиг. 180). Ход толкателя измеряется как расстояние между основной окружностью и контуром кулачка. Скорость v и ускорение можно найти вычислением производной по времени на диаграмме перемещений /1(9). Для расчетов применяется формула  [c.396]

Представляет определенный интерес анализ точности гипотезы плоских сечений с использованием найденного решения. Поскольку расчетные формулы для определения напряжений очень громоздки, то это может быть выполнено путем проведения соответствующих сопоставительных расчетов на ЭПВМ. Оказалось, что при счете на ЭиВМ удобнее пользоваться для определения коэффициентов А, В, С, D не формулами (10.5), а вычислять их непосредственно из решения системы уравнений для каждого члена ряда по стандартной подпрограмме.  [c.59]

Методика опирается на экспериментальное и расчетное исследования механизмов (рис. 1). Статические и динамические эксперименты дают информацию для анализов силового, устойчивости и моделирования, которые, в свою очередь, могут выявить потребность в дополнительных испытаниях. Путем силового расчета определяются предельные значения динамических нагрузок в приводе и наиболее нагруженные детали. При анализе устойчивости находят предельно допустимую величину колебаний, не ухудшаюш их точностных и силовых характеристик механизма, и предельные значения параметров, непосредственно влияющих на равномерность движения.  [c.98]

В заключение можно отметить совершенно недостаточный объем использования контактных экономайзеров на электро-станциях. Такое положение тем более нетерпимо в условиях, когда доля природного газа в топливном балансе электростанций в последние годы растет, и эта тенденция, видимо, будет продолжаться. Как уже указывалось в гл. II, одной из причин незначительного внедрения контактных экономайзеров на электростанциях является опасение, не отразится ли заметно нагрев воды в них на эффективности использования отборного пара турбин Для выяснения данного вопроса В. П. Шаниным при участии автора были выполнены специальные расчеты [95], рассмотрены варианты открытого и закрытого водоразбора при непосредственном использовании нагретой в экономайзерах воды и при работе экономайзера по схеме с промежуточным теплообменником более дорогой по капитальным влол ениям и менее эффективной в эксплуатации. Анализ расчетов показывает, что частичное вытеснение отборов турбин имеет место не всегда. Наибольший эффект от установки контактных экономайзеров достигается при открытом водоразборе. Это вполне естественно, так как эффективность их непосредственно зависит от удельного расхода нагреваемой воды (т. е. расхода, отнесенного к паропроизводительности котла, электрической и тепловой мощности ТЭЦ и т. д.), а при открытом водоразборе этот показатель выше. При наиболее благоприятных условиях срок окупаемости капитальных затрат составляет несколько месяцев, а при неблагоприятных (отсутствие водоразбора, установка промежуточного теплообменника и частичное вытеснение отборов турбин) —около 2 лет, что намного меньше нормативного срока. Причина этого в значительном повышении к. и. т. минимум на несколько процентов. Это настолько заметно снижает эксплуатационные расходы, что с избытком перекрывает и отчисления от капитальных вложений, и ухудшение показателей работы станции от уменьшения выработки электроэнергии на тепловом потреблении.  [c.120]

Формулы (10) и (11) неудобны для непосредственного использования при проектировании станка или приспособления искомой является величина а, которая содержится в формуле в неявном виде. Для разработки инженерных методов выбора параметров станка и приспособления зависимость между величинами /С, Л, а и а должна быть приведена в удобной табличной или графической форме, а для этого необходимо выполнить по формуле (И) расчеты для всех практически возможных комбинаций параметров. Ввиду большой трудоемкости таких вычислений были подвергнуты анализу и другие методы проверок на отсутствие интерференции и, в частности, предложенный С. А. Черкудиновым метод определения кривизны сопряженных профилей 1.  [c.187]

В заключение необходимо отметить, что несмотря на то, что выше получены соотношения для расчета неравновесных критических параметров и проведен их анализ только для цилиндрических каналов, это не препятствует распространению сделанных выводов и на сопла типа Вентури с острой входной кромкой и протяженной цилиндрической горловиной, поскольку гидродинамика течения вскипающей воды в таких соплах должна быть близка к гидродинамике течения в насадках с острой входной кромкой при равных или близких геометрических характеристиках. Косвенным доказательством этого утверждения может служить неоднократно доказанный экспериментально факт независимости критического расхода вскипающей воды при больших относительных длинах горловины (/р/ г Ю) от нали шя или отсутствия у такого сопла расширяющейся части. Это свидетельствует о том, что тогда и критические параметры в схожих по длине и диаметру горловины соплах и насадках должны быть близки между собой, поскольку критический расход непосредственно определяется параметрами в критическом сечений по (8.1).  [c.176]

Формально число комбинаций и, следовательно, число возможных решений было бы 2х2х2х2х4 = = 64. Однако анализ отличительных признаков сразу же показывает, что признак 1.1 может быть вычеркнут, так как он соответствует неудовлетворительному решению (рис. 17). Для непосредственной передачи враш,ающегося момента от одной ступени шкива к другой применение вала лишено смысла. Таким образом, признак 2.2 также может быть вычеркнут. На вопрос, выполнять ось сплошной или полой, отвечает приближенный расчет или справка в соответствующем руководящем материале [31], из которых видно, что полая ось будет на 70% дороже, чем сплошная. Вследствие этого комбинации с неподвижной полой осью отпадают.  [c.60]

Необходимо отметить, что метод расчета температурного, поля тела произвольной конфигурации с помощью привед0н1ного размера R вытекает из рассмотренного метода эквивадаентных тел как частный случай при весьма малой интенсивности теплообмена (Bi < 1). Это можно заметить при анализе точных решений для эквивалентных (классических) тел трех классов. К тому же выводу приводит непосредственный анализ расчетной формулы (281)  [c.174]



Смотреть страницы где упоминается термин Анализ непосредственным расчетом : [c.64]    [c.239]    [c.41]    [c.377]    [c.146]    [c.282]    [c.115]    [c.261]    [c.219]    [c.59]    [c.160]    [c.4]   
Основы флуоресцентной спектроскопии (1986) -- [ c.0 ]



ПОИСК



Непосредственный расчет величин Анализ данных по сдвигу фаз и степени модуляции, полученных при варьируемой частоте



© 2025 Mash-xxl.info Реклама на сайте