Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Качество изображения

В электрофотографических ПчУ скрытое электрическое изображение получается на фотополупроводниковом барабанном или ленточном промежуточном носителе. Для экспозиции изображения используют либо источники света, либо лазерные источники излучения. Перенос изображения на обычную бумагу производится порошковым проявителем. Типичный диапазон скоростей печати составляет 5000... 25 ООО строк/мин, качество изображения высокое. Вследствие высокой стоимости электрофотографические ПчУ целесообразно применять в системах с очень большим объемом выводимой информации.  [c.48]


Принцип работы электромеханических ЧА основан на преобразовании электрических управляющих сигналов в перемещение пишущего узла. Такие ЧА обеспечивают высокие точность и качество изображения. Их быстродействие ограничивается инерционностью электромеханических узлов.  [c.49]

Перемещение луча по экрану дисплея осуществляется как при растровом способе, но изображение формируется из строк простых графических элементов. При таком способе формирования изображений значительно сокращается описание изображения за счет ограничения возможностей получения произвольных изображений и некоторого ухудшения качества изображения. Данный способ имеет много общего с растровым способом формирования символов и обычно используется в недорогих дисплеях с малой разрешающей способностью.  [c.61]

В заключение этого краткого обзора фотоэлектрических приемников упомянем о возможности преобразования невидимого излучения (инфракрасные и ультрафиолетовые лучи) в видимое, что может быть осуществлено с помощью электронно-оптического преобразователя (ЭОП), который также способен выполнять функции усилителя света. Схема действия этого прибора представлена на рис. 8.24. На фотокатоде происходит преобразование оптического изображения в электронное. Затем электронные пучки от разных частей фотокатода фокусируются и попадают на флуоресцирующий экран, где происходит визуализация изображения. Качество изображения не очень хорошее, так как аберрации электронных пучков, как правило, больше оптических, но все же современные устройства подобного типа имеют в центре картины разрешающую способность порядка нескольких десятков линий на миллиметр, что близко к возможностям обычной фотографической пластинки.  [c.443]

Полагая D = 9 см, sin фо — sin ф = 1/3 в (67.3), находим чрезвычайно малое значение необходимой длительности импульса т лг 10 1 с. При снижении требований к качеству изображения минимальную длительность импульса можно еще более уменьшить.  [c.269]

Устранив экран и заставив работать всю линзу, мы в качестве изображения точки получим неравномерно освещенное пятнышко, несколько напоминающее комету с хвостом. Отсюда произошло название этого вида аберрации (кома хора — прядь волос комета — волосатая звезда).  [c.306]

Объективы непрерывно совершенствуются в смысле сочетания хороших качеств изображения со светосилой, т. е. возможно большей освещенностью изображения. Освещенность изображения равна световому потоку, деленному на площадь изображения, т. е. для удаленных объектов пропорциональна площади апертурной диафрагмы, деленной на квадрат фокусного расстояния объектива. Это отношение и называется светосилой объектива. Нередко светосилой называют отношение диаметра максимальной диафрагмы к фокусному расстоянию и считают освещенность пропорциональной квадрату светосилы. Правильнее называть это отношение относительным отверстием. Таким образом, светосила измеряется квадратом относительного отверстия.  [c.324]


Схема рефлектора простейшего типа в том виде, в каком она была предложена Ньютоном, изображена на рис. 14.16. В — отражательное зеркало. Плоское отклоняющее зеркало 5 служит для того, чтобы иметь возможность помещать окуляр и голову наблюдателя вне основного пучка и не вносить слишком большого диафрагмирования. Для огромных современных рефлекторов помещение наблюдателя целиком внутри трубы привело бы к относительно небольшому и вполне допустимому экранированию. Однако тепловые токи от тела наблюдателя в области основного хода световых лучей приводят к сильному понижению качества изображения. Поэтому сохраняют отклоняющее зеркало.  [c.334]

Необходимость работать с пучками, наклоненными к оси, ведет к ухудшению качества изображений в этих рефлекторах.  [c.335]

Цели обработки могут быть разными распознавание образов, улучшение качества изображений, извлечение информации,. эффективное кодирование или машинная графика. Попытаемся показать, каким образом голографические пространственные фильтры позволяют достичь различных целей при обработке изображений.  [c.50]

С помощью описанных голографических пространственных фильтров решено большое количество технических задач по улучшению качества изображения повышению контраста, устранению дефокусировки. Одним из наиболее. эффективных применений метода явилось улучшение изображений в электронном микроскопе. Улучшенные изображения имели высокий контраст и разрешение, близкое к предельному.  [c.53]

Качество изображения спектра  [c.19]

Предварительно оценивают получаемую щирину исследуемой линии и сравнивают ее с величиной спектральной щирины щели. Спектральную щирину щели находят теоретически, исходя из размеров геометрического изображения щели и дифракции на действующем отверстии прибора (см. задачу 1). Оценка спектральной щирины щели может быть также сделана по тонким линиям железа. В последнем случае будут учтены все факторы, в том числе качество изображения спектра в приборе и аппаратная функция фотослоя.  [c.276]

Качество изображения в основном определяется передающей трубкой.  [c.80]

Все более широкое применение находят волоконно-оптические телевизионные пирометры. Они обладают рядом преимуществ — возможностью усиления контраста изображения, высоким качеством изображения, возможностью его размножения на несколько телевизионных приемников и на большом удалении от объекта.  [c.135]

Все это обеспечивает высокое качество изображений на экранах или фотографиях, а таки<е сравнительно простое осуществление голографических методов интроскопии.  [c.240]

Расшифровка снимков состоит из оценки качества изображения, его анализа (отыскания на нем дефектов) и составления протокола (заключения) о качестве контролируемого сварного соединения.  [c.68]

При фотографировании деформационной структуры с экрана монитора получается достаточно хорошее качество изображения. Линии развертки при визуальном исследовании поверхности образца на экране монитора не влияют на точность подсчета линий скольжения и не искажают общую картину деформационного рельефа (рис. 183).  [c.285]

Все зтп предложения не смогли вытеснить дисплеи с обычной ЭЛТ, требующей регенерации изображения. Ухудшаются и другие свойства дисплея, в частности качество изображения и процесс стирания линий.  [c.16]

Ввиду применения оптики от обычного микроскопа качество изображения на матированном экране размером 250 X 300 мм недостаточно высокое. В настоящее время оптической промышленностью изготовляется специальный проектор ПЧК для контроля часовых камней и деталей приборов. Проектор имеет сменное увеличение 50 , 100 и 200 для проходящего света применяется лампа 12 в, мощностью 100 вт. Стеклянный слегка наклоненный к горизонту экран имеет размер 350 X 380 мм. Предметный стол без микровинтов имеет поперечное перемещение на 100 им и продольное ка 30 мм.  [c.381]

Однако Гельмгольц установил, что еще больше на качество изображения в микроскопе влияет дифракция, устанавливающая предел полезному увеличению микроскопа.  [c.368]

В рассматриваемый период произошли также и структурные изменения в технической оптике. Вплоть до конца XIX в. существовало мнение, что общая теория оптических систем, составляющая основу технической оптики, сводится лишь к геометрической оптике. Многие ученые-оптики считали, что теория оптических систем основана на двух-трех положениях (аксиомах) геометрической оптики, из которых дедуктивным образом могут быть получены все свойства этих систем. Однако по мере того, как расширялась область применения оптических систем и возникала настоятельная потребность в создании оптических систем с высоким качеством изображения, становилось необходимым учитывать также аберрации, возникающие вследствие явления дифракции. Знания законов только геометрической оптики оказалось недостаточным и возникла необходимость использования законов физической оптики. Кроме того, расширение областей применения оптических систем в условиях темповой адаптации и в крайних областях спектра (ультрафиолетовой и инфракрасной), так же как и вопросы, связанные с оценкой качества изображения, потребовали более глубокого знания свойств зрительного аппарата, т. е. возникла потребность и в привлечении законов физиологической оптики для проектирования и расчета оптических систем.  [c.370]


В 60 было показано, что при идентичности опорной и просвечивающей волн изображение вполне подобно объекту и может отличаться от него только в результате дифракционного расширения изображения каждой точки (см. 63). Попытка получить увеличенное изображение (см. 61) неизбежно сопряжена, как оказывается, с дополнительным ухудшением качества изображения (так называемые аберрации изображения см. гл. XIII). Это обстоятельство требует к себе особого внимания, поскольку аберрации быстро растут по мере увеличения размеров голограммы и углов падения света.  [c.261]

Из изложенного ясно, что для получения правильного изображения надо, чтобы через объектив микроскопа и далее проникали дифракционные пучки всех направлений. Обычно внутри микроскопа не ставится препятствий, так что опасность представляет лишь входной зрачок, которым служит оправа объектива, ограничизаю-ищя его рабочее отверстие ). Чем меньше предмет или его деталь d, тем большие углы дифракции он обусловливает и тем шире должно быть отверстие объектива. Отверстие объектива определяется углом 2и между крайними лучами, идущими от объекта (расположенного у фокуса) к краям объектива. Половина этого угла носит название апертуры. Если апертура меньше pi — угла дифракции, соответствующего спектрам первого порядка, т. е. sin и < sin tpi = = Ao/d, то в микроскоп проникнут только лучи от центрального максимума и мы не увидим изображения, соответствующего деталям, определяемым величиной d, т. е. в случае нашей решетки будем иметь равномерное освещение. Таким образом, условр езш и У - XJd есть условие, необходимое для разрешения деталей d. В крайнем случае (sin и = %old) мы жертвуем максимумами высших порядков, т. е. как сказано, несколько ухудшаем качество изображения. Чем больше sin и по сравнению с kjd, тем больше спектров высших порядков участвует в построении изображения, т. е. тем точнее передается наблюдаемый объект.  [c.353]

Как влияет увеличение диаметра объектива на размер дифракционного кружка и кружка рассеяния, обусловленного сферической аберрацией (В современных хороших объективах отверстная ошибка исправлена настолько хорошо, что качество изображения определяется явлениями дифракции.)  [c.889]

О преимуществах схемы прямой регистрации уже говорилось, к недостаткам ее можно отнести высокие требования к разрешающей способности регистрирующей среды и сильное влияние пятнистой структуры (спек.л-структуры) на качество изображения. В голографической схеме, использующей микрообъективы для создания увеличенно1 о изображения предмета, требования к разрешающей способности минимальны, пятнистая структура мало влияет на изображение, но поле зрения и глубина регистрируемого пространства определяются свойствами применяемого микрообъектива и оказываются весьма мaJ ыми. Таким образом, обе описанные схемы [ологра-фического микроскопа обладают существенными недостатками, ограничивающими возможностг. их применения при микроскопических исследованиях.  [c.85]

При наличии кривизны линий астигматичные изображения, получаемые от каждой точки щели, оказываются смещенными друг относительно друга и тем больше, чем дальше от середины щели находится изображаемая точка. В результате качество изображения спектральной линии ухудшается от середины к ее концам. В большинстве случаев на практике используется центральная часть щели, которая выделяется специальной диафрагмой, установленной перед щелью (диафрагма Гартмана).  [c.20]

Съемка процесса распространения волн напряжений производится с помощью скоростных фотокамер различной конструкции. Выбор камеры зависит от желаемого времени развертки, длительности процесса, необходимого качества изображения, размера снимка, надежности и экономичности съемки, количества и сложности необходимого для съемки оборудования. Камеры могут быть с неподвижной и с непрерывно движущейся пленкой. В свою очередь, камеры с неподвижной пленкой бывают двух типов в первом нет никаких движущихся частей, только освещение изучаемого явления обусловливает появление изображения во втором изображение быстро перемещается по пленке с помощью какой-нибудь оптико-механической системы. Камеры первого типа применяются вместе с аппаратурой для одиночной вспышки или для многоискровой съемки. При освещении процесса одной вспышкой света затвор камеры остается открытым, после вспышки он закрывается либо вручную, либо с помощью специального приспособления. При многоискровой съемке применяется схема, позволяющая использовать несколько камер ящичного типа и устроенная так, что каждая вспышка дает изображение только в одной камере. Существуют камеры, в которых пленка остается неподвижной, а само изображение перемещается по пленке с большой скоростью. Используются схемы, в которых совпадение прорезей во вращающихся дисках аналогично работе затвора, что позволяет получить изображение в нужном месте неподвижной пленки. Вращающиеся зеркала в соче-  [c.28]

Использование для оценки качества изображения оптической передаточной функции является наиболее обоснованным [ 13], однако использование ОПФ для решения задачи оптимизаиии параметров оптических схем затруднено вследствие значительных затрат ресурсов ЭВМ и существенно нелинейной связи конструктивных паргметров оптической схемы г/, di, щ с ОПФ.  [c.151]

Увеличение значения 7 соответствует улучшению качества изображения. Знание этой величшы при многокр атном итерационном процессе  [c.151]

Качество изображения дефекта, определяющее его выявляемость, называется видимостью V = klktnia, где к и femin — фактический и минимальный в данных условиях контрасты.  [c.51]

В целом волоконные световоды, используемые в эндоскопах, пока уступают по качеству изображения лин-80ВЫМ системам. Однако разрабатываются меры по устранению мозаичной структуры изображения в световодах и повышению их разрешающей способности.  [c.87]

Для того чтобы получить удовлетворительное качество изображения в усилителях второго типа, необходимо уменьшить потери света при переносе изображения с входного экрана на фотокатод усилителя света. Для этого применяют светосильную оптику. Основные характеристики объективов, применяемых в усилителях для передачи изображения с входного экрана на фотокагод ЭОП, а также с выходного акрана на фотокатод передающей телевизионной трубки, приведены в табл. 6, а характеристики световых ЭОП в табл. 7.  [c.363]

Мнения специалистов по ряду вопросов несколько расходились, но некоторые общие положения можно сформулировать. Отснятая, hoi не-проявленная фотопленка частично теряет плотность изображения в первые 1—2 дня экспозиции в морской воде при комнатной температуре. В зависимости от типа пленки эта потеря иногда может быть полностью восстановлена, а иногда нет. При пониженных температурах изображение ухудшается в меньшей степени. На некоторых типах пленок при О С изображение может сохраняться практически неизменным до месяца. Проводить общую интерноляцию в указанных временных и температурных интервалах, основываясь на имеющихся данных, нельзя. Поскольку изменение качества изображения обусловлено химическими процессами, то важное значение могут иметь условия экспозщии в воде, в частности близости пленки к металлическим поверхностям. Во всех случаях необходимо провести эксперимент на небольшой части плепки с целью определения режима проявления остальной части.  [c.475]


По изделиям радиопромышленности намечена разработка комплекса стандартов на микроблоки и микросхемы, устанавливающие единые требования к конструкции, сопряжению устройств, основным параметрам, технико-экономическим показателям, методам испытаний, правилам хранения, транспортирования и приемки, технологии изготовления для создания на их основе средств вычислительной техники и автоматизированных систем управления. Стандартизуются системы цветного телевидения, стереофонического вещания и двухречевого сопровождения телевизионных программ, а также приемной аппаратуры цветных телевизоров и радиовещательных приемников со сквозным стереофоническим трактом с целью повышения качества изображения и звучания. Создаются комплексы стандартов на основное оборудование, входящее в систему автоматизированной связи страны, обеспечивающее высококачественную передачу потока всех видов информаций телефонной, телеграфной, фототелеграфной, телевизионной, цифровой по стандартным коммутируемым и некоммутируемым каналам и групповым трактам частотного уплотнения.  [c.100]

Особенностью ЭЛТ является быстрое затухание изображения, требующее его регенерации. Этот процесс производится обычно с помощью ЭВМ, в памяти которой сохраняются данные об изображении. Процесс высвечивания изображения на ЭЛТ повторяется не менее 30 раз в секунду. При такой частоте устраняется мелькание, утомляющее зрение. В последнее время появились конструкции, не требующие регенерации. Это ЭЛТ с большим временем послесвечения, а также плазменные панели. Особенно перспективны последние [86], так как отличаются простотой конструкции и относительно высоким качеством изображения. Плазменная паиель состоит из стеклянных пластин, составляющих замкнутый объем, заполненный газом (на основе неона). Конструктивно панель оформлена так, что газ ведет себя как ди-  [c.15]

Для объективов больших габаритов (коллиматоров и астрономических приборов) используются стекла К8, Ф1, ТК16, а для сложных фотообъективов и окуляров — разные марки, обеспечивающие заданное качество изображения.  [c.512]

Погрешности измерения на проекционных оптико-механических приборах зависят от методов измерения, а также качества изображения, способов освещения, дифрагмирования, конфигурации и раз-394  [c.394]

Однако теория идеальной оптической системы не давала возможность оценить качество изображения, даваемого оптическим инструментом, а главное, не позволяла решить вопрос о влиянии конструктивных элементов линз (радиус кривизны, диаметр, толш ина, показатель преломления) на величину аберраций (ошибок), даваемых оптическими приборами [47]. Совершенствование модели идеальной оптической системы привело к разработке обш ей теории аберраций оптических систем.  [c.366]

Вследствие резкого повышения требований к качеству изображения, даваемого фотообъективом, использование совокупности только двух линз оказалось недостаточным. Начали строить оптические системы из трех и более линз. Крупным событием в истории инструментальной оптики стало создание в 1840 г. Й. Петцвалем портретного объектива, далеко опередившего оптическую технику своего времени. Объектив Петцваля имел большое относительное отверстие (1 3,2). У этого объектива впервые было достигнуто одновременное исправление многих аберраций [49]. При такой большой апертуре, какой обладал объектив Петцваля, этого было достигнуть очень трудно. Объективы Петцваля получили широкое распространение и находились в эксплуатации более 100 лет. Методика, которой пользовался ученый, не сохранилась, однако известно, что он построил свой портретный объектив на основании аналитических расчетов аберраций. Работа по созданию этого объектива была осуществлена в чрезвычайно короткие сроки (1836—1840 гг.). При этом был решен целый комплекс задач технической оптики оценка качества изображения, выбор типа оптической системы, создание техники расчета оптических систем и др.  [c.366]


Смотреть страницы где упоминается термин Качество изображения : [c.202]    [c.314]    [c.334]    [c.343]    [c.359]    [c.83]    [c.88]    [c.357]    [c.367]    [c.395]    [c.352]   
Оптическая голография Том1,2 (1982) -- [ c.453 ]



ПОИСК



Аберрации. Оптические среды. Оценка качества изображения

Анализ корреляционной статистики числовых критериев качества изображения

Влияние дифракционной эффективности ДОЭ на качество формируемого изображения

Влияние малых аберраций на качество изображения линии (некогерентное освещение)

Влияние температурного градиента стекла на качество изображения

Влияние температурных деформаций на качество изображения

Влияние тонких случайных экранов на качество изображения

Влияние фазовых искажений на качество оптического изображения

КРИТЕРИИ ОЦЕНКИ КАЧЕСТВА ИЗОБРАЖЕНИЯ ПРИ РАСЧЕТЕ ОПТИЧЕСКИХ СИСТЕМ

Качество голографических изображений

Качество изображения оценка

Качество изображения, глубина резкости телецентрический ход лучей

Критерии качества изображения и допуски на оптические системы

Критерии качества изображения на основе лучевой диаграммы рассеяния

Критерии оценки качества изображения и допуски на дефекты оптической системы

Критерий качества изображения

Общее выражение для допустимого значения малых аберраций, влияющих на качество изображения точки

Оптические методы улучшения качества изображений

Основные функции оценки качества точечного изображения и числовые критерии на их основе

Оценка качества изображения объектива

Оценка качества изображения по результатам аберрационного расчета

Параметры качества изображения

Плоское зеркало. О некоторых факторах, влияющих на качество автоколлимационного изображения

Режим быстрого зумирования и качество изображения

Способы и критерии оценки качества изображения

Улучшение качества изображений

Улучшение профиля интерференционных полос и качества изображений

Характеристика качества изображения, даваемого фотографическим объективом

Характеристики качества изображения

Цифровое моделирование влияния искажений при регистрации голограмм на качество восстанавливаемых изображений



© 2025 Mash-xxl.info Реклама на сайте