Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания апериодические

Затухающие колебания. Апериодическое движение  [c.182]

Затухающие колебания. Апериодическое движение. Система имеет успокоитель, гасящий колебания. Моменты Жт = 0 Мвн=0.  [c.198]

Статическое удлинение пружины под действием груза веса Р равно /. На колеблющийся груз действует сила сопротивления среды, пропорциональная скорости. Определить наименьшее значение коэффициента сопротивления а, при котором процесс движения будет апериодическим. Найти период затухающих колебаний, если коэффициент сопротивления меньше найденного значения.  [c.250]


Составить дифференциальное уравнение малых колебаний тяжелой точки А, находящейся на конце стержня, закрепленного шарнирно в точке О, считая силу сопротивления среды пропорциональной первой степени скорости с коэффициентом пропорциональности а, и определить частоту затухающих колебаний, Еес точки А равен Р, коэффициент жесткости пружины с, длина стержня , расстояние ОВ = Ь. Массой стержня пренебречь. В положении равновесия стержень горизонтален. При каком значении коэффициента а движение будет апериодическим  [c.251]

Задача 940. Электромотор массой М (вместе с ротором) установлен на упругом фундаменте, снабженном демпфером. Статический прогиб фундамента равен /. Ротор мотора имеет массу т, а центр тяжести его смещен по отношению к оси вращения на величину г. Определить угловую скорость со ротора, если амплитуда вынужденных колебаний замерена и равна а. Демпфер обусловливает появление силы сопротивления, пропорциональной скорости, и сконструирован так, что при выключенном моторе имеет место предельное апериодическое движение фундамента.  [c.335]

В первом томе, рассматривая свободные колебания материальной точки, мы заметили, что они возникают без притока внешней энергии в систему. Действительно, при движении материальной точки под действием восстанавливающей силы упругости механическая энергия сохраняется. Существующие колебания будут гармоническими, незатухающими. Если движение точки происходит при наличии силы сопротивления, например, линейно зависящей от скорости, то даже при существовании восстанавливающей силы движение точки может быть апериодическим. Если все же возникает колебательное движение, то колебания материальной точки будут в этом случае затухающими в результате рассеяния механической энергии.  [c.276]

Общее решение этого уравнения представим в виде суммы общего решения xi соответствующего однородного уравнения и частного решения Xi неоднородного уравнения Xi при k > п представляет свободное затухающее колебание, а при k — апериодическое движение. Займемся поисками частного реше ния Хг положим  [c.88]

Под действием каких сил и при каких условиях возникают либо затухающие колебания, либо апериодическое движение  [c.181]

Влияние трения на затухание колебаний и переход от колебательной системы к апериодической можно продемонстрировать при помощи груза на пружине помещая его в среду с различной вязкостью. В воздухе сопротивление мало, и поэтому колебания происходят с очень малым затуханием (б 0,01). В воде сопротивление гораздо больше, и затухание заметно увеличивается (6 I). Наконец, в масле отклоненный груз вообще не переходит за положение равновесия — происходит апериодическое движение (6 = оо). Коэффициент трения Ь для силы трения, действующей на тело со стороны жидкости, связан с коэффициентом вязкости жидкости. Измеряя затухание колебаний тела, погруженного в жидкость, можно определить коэффициент вязкости жидкости.  [c.601]


Вынужденные колебания в апериодических системах  [c.616]

Итак, особым СВОЙСТВОМ гармонических колебаний является их способность воздействовать на гармонические резонаторы, настроенные на частоту данного гармонического колебания. Однако этим далеко не исчерпываются все важные свойства гармонических колебаний. По отношению к гармоническому внешнему воздействию специальным образом ведут себя не только линейные колебательные системы (гармонические резонаторы), но и гораздо более широкий класс линейных механических систем (не только колебательных, но и апериодических). Сочетание гармонического воздействия и свойств линейной системы приводит к тому, что результат этого воздействия отличается характерными особенностями, не повторяющимися ни в каком случае негармонического воздействия на линейную или нелинейную систему. Эти особенности касаются формы колебаний.  [c.619]

При р = (0о коэффициент затухания называют критическим. В этом случае [см. (46.8)] период колебаний обращается в бесконечность. Это значит, что система, выведенная из положения равновесия, будет медленно возвращаться в него, расходуя почти всю потенциальную энергию на преодоление трения. Такое движение системы называют апериодическим.  [c.185]

Реже встречается случай пары комплексных и двух вещественных корней (р1,2 = а1 ф Рз = Сг р4 = а ), соответствующий наложению одного колебательного на два апериодических движения. Причем амплитуда колебаний может уменьщаться или увеличиваться. При увеличении амплитуды движение в целом будет неустойчиво, даже если апериодические движения характеризуются уменьщением с течением времени величины А .  [c.41]

При б <со5 мы имеем дело с затухающими колебаниями линейного осциллятора, фазовый портрет которых представляет собой совокупность логарифмических спиралей, стягивающихся в особую точку типа фокус. Для > ф система становится апериодической, и на фазовой плоскости движения изображаются фазовыми траекториями, имеющими вид кривых, сходящихся в особую точку типа узел без обходов вокруг нее. В обоих  [c.51]

Обратимся к особо важному случаю гармонического воздействия и из всего многообразия нелинейных диссипативных систем с одной степенью свободы выберем слабо нелинейные системы, в которых вынужденные колебания при таком воздействии также близки к гармоническим. Требование малости диссипации не столь уж принципиально, но поскольку нас интересуют в основном системы с отчетливо выраженными колебательными свойствами, а не апериодические, то мы в нашем рассмотрении ограничимся случаями небольшого затухания (малой диссипации).  [c.112]

В этом случае движение является результатом сложения затухающего колебания механической системы и ее апериодического движения.  [c.123]

При Qj > получается решение для апериодического процесса. Такой процесс возможен только при значительном трении в подшипниках оси качаний, что может быть при большом k. При удовлетворительно выполненных подшипниках (к невелико) < а , так что корни и Рз являются комплексными и колебания получаются затухающими.  [c.281]

Система регулирования практически может быть использована при быстром затухании апериодических колебаний с малой амплитудой (рис. 12.17, б) или при плавном переходе ско-рости от одного установившегося режима к другому  [c.396]

Уравнение (15.19) является дифференциальным уравнением второго порядка, и в зависимости от соотношений между его коэффициентами может относиться или к апериодическому типу второго порядка, или к колебательному типу. Отсюда следует, что при решении задач динамика механизмов с электродвигателем необходимо давать оценку дополнительного члена, выражающего электромагнитную силу инерции. Если пользоваться только статической характеристикой электродвигателя, то нель- зя обнаружить колебательные режимы, которые в областях, близких к резонансу, приводят к значительному увеличению ам плитуд колебаний и динамических нагрузок.  [c.287]

Первый случай обычно встречается в приложениях— это случай периодически затухающих колебаний. Второй случай характеризуется наличием апериодического затухания . В обоих случаях мы выбираем  [c.140]

Таким образом мы снова нашли дифференциальное уравнение (линейное, с постоянными коэффициентами), исчерпывающим образом разобранное в отношении определяемых им движений в кинематике (т. I, гл, II, п. 41—43). Вспоминая установленные там результаты, мы можем прямо утверждать, что точка Р при указанных выше условиях совершает или затухающие колебания около точки О, или же апериодическое движение (самое большее с одним обращением направления и с асимптотической точкой на конечном расстоянии или в бесконечности).  [c.65]


Решение этого характеристического уравнения дает ЗN значений (о , соответствующих ЗУ частотам главных колебаний системы. Эти ЗУ решений системы являются линейно независимыми, и общее движение системы описывается произвольной линейной комбинацией этих решений. Следует подчеркнуть, что отдельные виды движений, как правило, не связываются с индивидуальными материальными точками. В общем случае движение каждой материальной точки включает слагаемое с каждой из главных частот. Некоторые значения могут быть отрицательны тогда соответствующее чисто мнимое со отвечает неустойчивому слагаемому движения. Такие апериодические слагаемые иногда рассматривают как виды колебаний в общем смысле, хотя их существование в действительности исключается начальным предположением, состоящим в том, что система движется около положения устойчивого равновесия.  [c.51]

Так как обе функции, и и 5, содержат h п а, то, казалось бы, естественно ожидать, что путем выбора начальных условий всегда можно получить как периодические, так и апериодические движения. Такая гипотеза, однако, оказывается несостоятельной. Мы знаем, что существуют системы, которые всегда совершают периодические движения, и системы, которые никогда не движутся периодически. Оба типа систем встречаются в теории малых колебаний. Если отношение периодов есть число рациональное, то траектория системы всегда периодична, каковы бы ни были начальные условия если же это отношение есть число иррациональное, то траектория никогда не является периодической (исключая, разумеется, тот случай, когда система совершает главные колебания). Другой достаточно ясный пример — это ньютоновская орбита, которая всегда периодична, каковы бы ни были величина и направление начальной скорости планеты (если, конечно, начальная скорость не превышает того значения, которое она имела бы при движении из бесконечности в начальную точку под действием притяжения к центру). В 18.8 мы вернемся к этому вопросу и выясним причину встречаюш ейся здесь особенности.  [c.308]

Эти корни могут быть действительными или комплексными. В первом случае имеет место непериодическое движение (апериодическое затухание), во втором — затухающие колебания ).  [c.98]

Рис. 68. Затухающие колебания и апериодический режим осциллятора с трением (слабым (а) и сильным (б) соответственно) Рис. 68. Затухающие колебания и апериодический режим осциллятора с трением (слабым (а) и сильным (б) соответственно)
Однако изменение числа оборотов вала двигателя вызывает нарушение указанного условия, вследствие чего муфта регулятора перемещается в новое положение равновесия. При рассмотрении вопроса в статических условиях (отбрасывается инерционность движущихся деталей) перемещение муфты точно следует закону изменения числа оборотов, а остановка муфты произойдет в момент установления числа оборотов при новом положении равновесия. В действительности же перемещение муфты (переходный процесс) протекает иначе, так как перемещающиеся детали обладают определенной массой, а движение сопровождается ускорением. Указанные сбстоятельства могут вызвать не только сдвиг фаз изменения числа оборотов вала двигателя и перемещения муфты, но и появление колебаний муфты около нового положения равновесия. Поэтому первой задачей динамического исследования является подбор такой системы регулирования, которая обеспечивала бы установление нового положения равновесия без колебаний (апериодический переходный процесс) или с затухающими колебаниями (периодический затухающий переходный процесс).  [c.346]

Прямолинейные колебания точкп. Свободные колебания материальной точки под действием восстанавливающей силы, пропорциональной расстоянию от центра колебаний. Амплитуда, начальная фаза, частота и период колебаний. Затухающие колебания материальной точки при сопротивлении, пропорциональном скорости период этих колебаний, декремент колебаний. Апериодическое движение.  [c.8]

Движение материальной точки под действием восстаиавливаюи1ей и возмущающей сил и силы сопротивления среды, пропорциональной скорости точки, представляет собой наложение собственно вынужденных колебаний на затухающие колебания при n ,k или наложение вынужденных колебаний на апериодическое движение при n k. Наличие множителя е в членах, соответствующих  [c.56]

Каков вид графиков свободных и затухающих колебаний, а также апериодического движения материалыюй точки  [c.62]

В измерительных приборах при всяком резком изменении измеряемой величины обычно возникают собственные колебания около нового положения равновесия. Если трение в приборе мало, то колебания эти затухали бы очень медленно. Приходилось бы долго ждать, пока прибор установится в новом положении и можно будет произвести отсчет. Поэтому в измерительных приборах обычно искусственно увеличивают затухание колебаний при помощи специальных демпферов — механических или электромагнитных. Простейшим является воздушный демпфер — легкий поршенек, соединенный с подвижной системой прибора и движущийся в трубочке (без трения о стенки, чтобы не было застоя ). Сопротивление воздуха при движении поршенька делает прибор апериодическим. Сопротивление это не должно быть очень большим, так как тогда оно очень замедлит движение системы к новому положению равновесия. Наи-аыгоднейшим является такое сопротивление, при котором движение системы из колебательного превращается в апериодическое (6 = 2 /йт), т. е. когда трение равно критическому.  [c.601]


В рассмотренном случае искажение формы колебаний вызвано резонансными явлениями, Однако и п том случае, когда затухание системы столь велико, что резонансные явления в ней очень слабо выражены или даже система из колебательной превратилась в апериодическую, условия неискаженного воспроизведения формы негармонических колебаний все же не выполняются. Так как превращению колебательной системы в апериодическую соответствует условие (см. 138) Ь > 2Ykm, то при большом Ь и достаточно малых кит мы всегда получим либо колебательную систему с большим затуханием, либо апериодическую систему, т. е. как раз интересующие нас случаи.  [c.621]

Но, как видно из (17.22), коэффициент пропорциональности между амплитудой смещения X какой-либо гармоники вынужденного колебания и амплитудой Fg той же гармоники внешней силы при Ь бол1,шом, а т и k малых существенно зависит от частоты ш рассматриваемой гармоники вместе с тем, как видно из (17.23), от w существенно зависит и угол сдвига фаз ф. Следовательно, искажения формы негармонической внешней силы принципиально неизбежны н в линейной колебательной системе с большим затуханием, и в апериодической системе. Таким образом, всякая линейная система в той или иной степени искажает форму негармонической внешней силы, воспроизводя эту форму в вынужденных колебаниях.  [c.621]

Такое движение складывается из свободного (колебательного или апериодического) и вынужденных колебаний с той же частотой что и колебаний рулей. Относительно этих колебаний изменения параметров а и 0 запаздывают, в частности амплитуда Цтах достигается позже максимального углабэтах- Характер этого запаздывания для угла атаки можно выразить частным решением уравнения вынужденных колебаний Он =  [c.55]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Если же элемент 1 (см. рис. 5.1) представляет собой апериодический контур, состоящий в основном из RL- или / С-элементов, то форма автоколебаний существенно зависит от свойств цепи обратной связи. Если в такой колебательной системе выполнены условия самовозбуждения, то форма генерируемых колебаний, как правило, далека от синусоидальной, а период колебаний связан с временем релаксации системы, хотя в некоторых случаях (см. ниже) подбором параметров автоколебательной системы можно заставить ее генерировать колебания, близкие к гармоническим. Эти автоколебательные системы принято называть релаксационными. Релаксационными системами считаются системы, в которых после разрыва канала, по которому восполняются потери в системе (элемент 2 на рис. 5.1), колебания в накопителе / апериодически затухают независимо от формы этих колебаний до разрыва цепи обратной связи. Отсюда сразу же вытекает, что в релаксационных автоколебательных системах может происходить 100%-ный обмен энергии (рассеиваемой на пополняемую) в течение каждого периода автоколебаний.  [c.188]

Из этого равенства вытекает чем больше коэффициент характеризующий демпмфирование, тем более устойчивой окажется система регулирования. При некоторых условиях, когда сопротивление демпфера оказывается значительным, можно получить так называемый апериодический процесс регулирования. В этом случае переходный процесс получается плавным, и угловая скорость а изменяется так, как показано на рис. 204, а. При меньших сопротивлениях демпфера, но таких, при которых указанное выше неравенство соблюдается, мы имеем затухающий колебательный процесс регулирования (рис. 204, б). Если это неравенство превращается в равенство, то наблюдается гармонический колебательный процесс с незатухающими колебаниями (рис. 204, в). Расходящиеся колебания обнаруживаются при изменении знака рассматриваемого неравенства.  [c.343]


Смотреть страницы где упоминается термин Колебания апериодические : [c.44]    [c.57]    [c.420]    [c.367]    [c.319]    [c.69]    [c.600]    [c.87]    [c.250]    [c.182]    [c.171]    [c.245]   
Механика (2001) -- [ c.140 ]



ПОИСК



Затухающие колебания. Апериодическое движение

Колебания, затухающие апериодически

Колебания, затухающие апериодически механические

Негармоническое внешнее воздействие. Вынужденные колебания в апериодических системах

Отклонение системы апериодическое в форме затухающих колебани

Отклонение системы апериодическое колебаний



© 2025 Mash-xxl.info Реклама на сайте