Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродвигатель - Статические характеристики

Рассмотрим, например, статическую характеристику движущего момента электродвигателя постоянного тока с независим  [c.284]

Уравнение (15.19) является дифференциальным уравнением второго порядка, и в зависимости от соотношений между его коэффициентами может относиться или к апериодическому типу второго порядка, или к колебательному типу. Отсюда следует, что при решении задач динамика механизмов с электродвигателем необходимо давать оценку дополнительного члена, выражающего электромагнитную силу инерции. Если пользоваться только статической характеристикой электродвигателя, то нель- зя обнаружить колебательные режимы, которые в областях, близких к резонансу, приводят к значительному увеличению ам плитуд колебаний и динамических нагрузок.  [c.287]


Подставляя это значение i в формулу (15.22), получаем статическую характеристику электродвигателя постоянного тока с последовательным возбуждением  [c.288]

V = 8ц/2М] — условный коэффициент жесткости статической характеристики электродвигателя Та = 1/(0с 5 ь — электромагнитная постоянная времени 5 и Мтс определяются по зависимостям, приведенным в [6] п — показатель степени упругой характеристики МСХ Ма и Мс — моменты сил движущих и сил сопротивления.  [c.81]

В практике инженерных расчетов значительное распространение получило предложение, основанное на использовании статических характеристик электродвигателей [23], [96], [101]. При этом электромагнитные переходные явления в двигателе не учитываются, что может повлечь за собой неправильную оценку динамических свойств машинного агрегата. Поскольку это предложение весьма заманчиво по своей простоте, важно оценить его применимость, учитывая искажения, вносимые в рассматриваемые динамические процессы.  [c.7]

Далее представим момент сопротивления в виде суммы среднего значения Мс и переменной составляющей Мс (О- Соответственно функцию 1 д (О также представим как йд (/) = Qg + + Йд (0. Постоянная составляющая д может быть легко найдена с помощью статической характеристики электродвигателя  [c.135]

Если в данном расчете ограничиться учетом статической характеристики электродвигателя, то можно в качестве первого приближения воспользоваться условием (5.189) при некоторой корректировке крутильной жесткости привода  [c.243]

Здесь С , — жесткость привода механизма и ее скорректированное значение с учетом статической характеристики электродвигателя (О — угловая скорость ведущего звена.  [c.243]

Следует отметить, что в настоящей работе рассматриваются лишь статические характеристики муфты. Исследования ряда авторов показывают, что при быстропротекающих переходных режимах действительные механические характеристики привода могут существенно отличаться от статических [23, 29]. Кроме того, привод машины представляет собой электромеханическую систему, исследование которой при более строгом подходе следует проводить, считаясь с динамическими характеристиками электродвигателя и питающей его сети. Здесь прежде всего следует учитывать искажения, вызванные резким падением напряжения сети в период запуска при питании машин от маломощного трансформатора. Известное влияние на форму механических характеристик могут оказывать электромагнитные процессы в двигателе, роль которых возрастает при уменьшении длительности переходного процесса.  [c.100]


Рассмотрим эквивалентные схемы замещения этих систем. Механическая система, связанная с приводом, насоса, представлена на рис. 2. Скольжение асинхронного электродвигателя под нагрузкой (см. статическую-характеристику на рис. 3) учтено двумя элементами генератором скорости со и демпфером с , который соединяет его со всей остальной системой.  [c.44]

Прибор ГП предназначен для определения статических характеристик трения при малых скоростях относительного перемещения ползуна. Привод осуществляется от электродвигателя постоянного тока. Электродвигатель укреплен на изолированном от прибора основании. Электродвигатель соединен с остальными частями прибора упругой передаточной муфтой, поэтому почти полностью устраняется влияние вибрации основания электродвигателя. От электродвигателя через упругую муфту движение передается на червячный редуктор, колесо которого посажено на хвостовик ходового винта. Ходовой винт, вращаясь в маточной гайке, жестко связанной с ползуном, передвигает последний по салазкам, укрепленным на станине. К ползуну прикреплена насадка, в зажимное приспособление которой вставляется пластина из испытуемого материала. К станине жестко крепится кронштейн для зажима упругой измерительной балочки, имеющей на свободном конце гребенку для укрепления тяг.  [c.158]

У параллельно работающих турбогенераторов наклоны статических характеристик не должны сильно отличаться друг от друга. При значительном увеличении нагрузки в сети возможна перегрузка турбины с малой степенью неравномерности, так как больше нагружается та турбина, у которой статическая характеристика более пологая. При значительном уменьшении нагрузки генератор этой турбины может начать работать в качестве электродвигателя.  [c.57]

Рис. 11.9. Статические характеристики электродвигателей переменного тока Рис. 11.9. Статические характеристики электродвигателей переменного тока
Рис. 11.10. Статические характеристики электродвигателей постоянного тока Рис. 11.10. Статические характеристики электродвигателей постоянного тока
Уравнение статических характеристик для электродвигателей постоянного тока отличается от соответствующего уравнения для машин переменного тока (11.1) переменностью коэффициентов l и Са, существенным образом зависящих от тока возбуждения.  [c.272]

На рис. 5 показаны статические характеристики гидропривода, определенные в нормальных условиях (температура окружающей среды 20 5° С, напряжение питания электродвигателя 28 в, атмосферное давление 760 мм рт. ст., относительная влажность воздуха 60—80%). Из рис. 5 видно, что силовая характеристика гидропривода имеет характер, близкий к релейному, а скоростная характеристика при отсутствии нагрузки имеет практически линейный характер. При увеличении нагрузки на штоке гидропривода скорость его падает не линейно, а примерно пропорционально корню квадратному из величины относительного увеличения нагрузки при положениях золотника, соответствующих величине командного сигнала < (0,7-f-0,8), 2,. Таким образом, при введении в следящий гидропривод с проточным золотником положительной обратной связи по давлению нагрузки его статические характеристики приобретают вид, свойственный гидроприводу с непроточным золотником и регулируемым насосом (случай регулирования при постоянном давлении), а сам гидропривод продолжает сохранять все положительные качества, присущие гидроприводам с проточным золотником.  [c.37]


В данном случае рассматривается статическая характеристика двигателя. При более полном учете электромагнитных характеристик электродвигателя и представлении его как динамического объекта в систему (27) необходимо ввести известные дифференциальные уравнения, описывающие взаимосвязь электрических и магнитных параметров двигателя соответствующего типа.  [c.397]

На рис. 9.4.1 сплошной линией показана статическая характеристика асинхронного двигателя в обычных координатах <йМ. Асинхронный электродвигатель имеет пониженный пусковой момент М , а максимальному моменту соответствует критическое скольжение Переход за этот предел приводит к нарушению устойчивости движения (жесткость характеристики становится положительной).  [c.546]

Статические характеристики, показанные на рис. 9.4.3, могут быть отнесены и к вентильному электродвигателю, который состоит из электродвигателя переменного тока, по конструкции аналогичного синхронному, и вентильного коммутатора - преобразователя частоты, управляемого в функции положения ротора или магнитного потока двигателя. Вентильный коммутатор функционально заменяет щетки и вращающийся коллектор, характерные для двигателя постоянного тока.  [c.548]

Электродвигатель - Статические характеристики 545  [c.620]

В программу типовых испытаний входят все пункты приемо-сдаточных испытаний определение тока, соответствующего превышению температуры при номинальном режиме работы (при этом токе проводят приемо-сдаточные испытания на нагревание) испытание на нагревание при продолжительной или соответственно при повторно-кратковременной мощности построение сетки кривых нагревания и охлаждения тяговых электродвигателей и генераторов снятие а) скоростных характеристик при номинальной мощности двигателя (на характеристике наносится зависимость питающего напряжения от тока якоря) и для всех основных ступеней регулирования возбуждения электродвигателей б) нагрузочных характеристик при разных токах нагрузки до 1,5 номинального тока для генераторов и для электродвигателей при токах якоря 0 0,5 1,0 1,5 номинального определение потерь, к. п. д. и зоны наилучшей коммутации определение зависимости статического давления в камере со стороны входа воздуха в машину от количества продуваемого через машину воздуха испытание на вибропрочность (допускается проверка по узлам) определение массы (допускается проверка по узлам). Примерно в таком же объеме проводятся испытания для тяговых синхронных генераторов.  [c.63]

Для асинхронных электродвигателей с к. з. ротором и для синхронных двигателей механическая характеристика определяет его пусковой момент. При оценке требуемого пускового момента двигателя следует учитывать, что у ряда механизмов, в особенности таких, где трение составляет значительную часть нагрузки, пусковой момент превышает на 30—50% расчетный статический момент сопротивления при движении.  [c.127]

Эксперименты показывают, что пусковой момент может увеличиваться в 2—9 раз по сравнению с установившимся значением. На рис. 7 показаны статическая 1 и динамическая 2 характеристики асинхронного электродвигателя А51-6 в режиме пуска [116].  [c.22]

Методика исследовательских испытаний включает статические, расширенные точностные испытания, запись сигналов, поступающих от системы управления в целях более точного определения временных интервалов и согласованности работы рабочих органов, записи давлений на различных участках пневмо- или гидросистемы и усилий в звеньях для локализации дефектов, запись мощности электродвигателей или силы тока, частоты вращения вала двигателя, исследование виброакустических характеристик, измерения температуры и др. [4]. Эти исследования проводятся до испытаний на надежность и долговечность и периодически повторяются в ходе ресурсных испытаний, что дает возможность установить корреляционные связи между показателями динамического качества, наработкой на отказ и износом деталей механизма робота. В процессе эксплуатации эти связи исследуются при проведении испытаний до и после ремонтных работ, связанных с разборкой механизмов, когда имеется возможность изучить характер износа.  [c.224]

Для уменьшения влияния тока возбуждения на статические и динамические свойства электродвигателей постоянного тока и повышения тем самым температурной стабильности их характеристик параметры машин выбирают таким образом, чтобы при номинальном токе возбуждения насыщение магнито-провода было достаточно большим. На рис. 11.11 приведены кривые изменения коэффициентов i и j в зависимости от тока возбуждения для электродвигателей такого типа.  [c.272]

Станки для динамического уравновешивания 4.343 — Технические характеристики +.344 Устройства для, статического уравновешивания — Схемы принципиальные 4.342 — Технические характеристики 4.343 Уравновешивание электродвигателей — Схемы установки 4.345 Уровень гидростатический 4.649  [c.659]

I— Неуравновешенность ротора — Устранение 343 - Станки для динамического уравновешивания 343 — Технические характеристики 344 Устройства для статического уравновешивания — Схемы принципиальные 342 -— Технические характеристики 343 Уравновешивание электродвигателей— Схемы установки 345 Уровень гидростатический 649 ---дифференциальный — электроиндуктивный 649  [c.705]

Статическая характеристика наиболее распространенного трехфазного асинхронного электродвигателя с короткозамкнутым рото-  [c.123]

Обычно при динамических исследованиях машин с электроприводом пользуются наперед заданными статическими характеристиками электродвигателей. Однако в некоторых режимах работы электродвигателей может оказаться, что такие расчетыл будут неточными, так как в них не учитывается электромагнитная инерция двигателя.  [c.11]


В (Машиностроении используется схема с управляемым насосом и неуправляемым гидродвигателем [1] (аналогичная электродвигателю с независимым возбуждением), статическая характеристика которой при отсутствии потерь, постоянной KOpO THj приводного двигателя = onst и наибольшем возможном (определяется настройкой предохранительного клапана) перепаде давления р показана на рис. 2 в виде закономерностей  [c.118]

Существенное сближение величин JVy и ТУд с уменьшением весов и габаритов более чем в два раза, достигается применением нескольких гидромоторов с переключением их из последовательного соединения на параллельное. Еще большее сближение тех же величин достигается применением составных гидромоторов [31. Очевидно, кардинальное решение достигается применением нерегулируемого насоса с управляемым гидромотором (аналогично электродвигателю с последовательным возбуждением). Однако ограничиваться только статической характеристикой при оценке новой схемы силового электрогидропривода без анализа ее динамических свойств не следует.  [c.119]

На рис. 121 показан стенд для исследования амплитудно-частотных характеристик турбомуфт. Испытываемая турбомуфта 6 предохранительного типа установлена на измерительных валах с токосъемными устройствами 5 и 7. Турбомуфта приводится во вращение электродвигателем постоянного тока 4 в балансирном исполнении с весовым механизмом 3. Нагрузочное устройство состоит из насоса 10 регулируемой производительности, который трубопроводами соединен с вращаюш имся золотником 14. В зависимости от регулировки вращающегося золотника и производительности (удельного расхода) насоса в системе устанавливается то или иное давление. При исследовании статических характеристик в гидравлической системе насоса устанавливается давление, контролируемое по манометру 11, при этом измеряют момент и скорость вращения ведущего и ведомого валов. По результатам измерения режима работы турбомуфты при различных нагрузках строятся внешние характеристики турбомуфты при стационарном режиме.  [c.228]

Синхровный элешгродвигатель. Синхронный электродвигатель имеет такой же статор с трехфазной обмоткой, как и асинхронный, создающий вращающее магнитное поле (см. рис. 9.1.2, г). Однако в отличие от асинхронного двигателя, ротор синхронного двигателя несет алекгромагниты, к которым подводится постоянный ток, или постоянные магниты и вращается с синхронной скоростью (Oq и независимо от нагрузочного момента. Поэтому статическая характеристика синхронного электродвигателя представляет собой прямую (сплошная линия), параллельную оси абсцисс (рис. 9.4.2, а), т.е. во всех точках характеристики ее жесткость равна бесконечности.  [c.546]

Сегаль Д, И. Определение расчетных нагрузок на редуктор и выбор электродвигателей с учетом статических характеристик режима работы мостового крана//Электропривод, автоматизация и надежность ПТМ/ВНИИПТмаш, М. 1981. С. 84—95.  [c.292]

Для более полного использования мощности силовой установки тепловоза электрическая передача оборудована комбинированной автоматической системой регулирования напряжения тягового генератора. Сигналом по возмущающему воздействию в этой системе является наибо./1ьшмй ток из четырех групп тяговых электродвигателей (жесткие динамические характеристики систе.мы возбуждения генератора). Начиная с 4-й позиции контроллера, система регулирования напряжения обеспечивает полное использование мощности дизеля. До 4-й позиции контроллера (КМ) статические характеристики системы имеют вид селективной характеристики. Весь диапазон изменения частоты вращения коленчатого вала дизеля разбит на 15 рабочих позиций и одну позицию холостого хода.  [c.236]

Основная функция системы управления заключается в формировании токовой диаграммы электропривода, обеспечивающей разгон, реверс и торможение электродвигателя в заданное время. Формирование переходных процессов и необходимых статических характеристик осуществляется системой управления, в которой используются обмотки управления магнитного усилителя, питающего независимую обмотку возбуждения генератора. Последняя состоит из двух полуобмоток, расположенных на одноименных полюсах генератора.  [c.207]

В связи с возрастающими скоростями движения элементов машин, роль динамических расчетов непрерывно повышается. Задача создания достаточно прочной и неметаллоемкой машины, способной противостоять возникающим внешним статическим и динамическим силам при их наиболее неблагоприятном сочетании, все время усложняется и требует при своем решении рассмотрения многих факторов, которые ранее, при ограниченных скоростях, могли и не учитываться. Поэтому возникла необходимость/ замены применяемого ранее статического расчета динамическим, при котором машина рассматривается комплексно, как единый электромеханический агрегат. Действующие в нем внешние силы определяются не только сопротивлениями на рабочем органе, но и законами изменения движущего момента как функции времени или скорости. Эта практика получила особое распроетранение применительно к машинам, приводящимся электродвигателями, механические характеристики которых достаточно четко выра- жаются аналитическими зависимостями.  [c.5]

Регулирование скорости асинхронных электродвигателей. Для двигателей с фазовым ротором применяется регулирование скорости реостатом в цепи ротора. Схема регулирования не отличается от пусковой схемы, но реостат должен быть рассчитан на длительный режим. Этот способ дает возможность получить разные скорости (ниже синхронной) при наличии более или менее значительного момента статического сопротивления на валу двигателя. Механические характеристики приведены на фиг. 13, на которой пока.чано, что при Af = Afj можно получить скорости Пх, /12, щ а rig.  [c.419]

Уравновешивание изделий в сборе осуществляют с помощью установок и станков, представляющих собой особый виброустойчивый стенд, снабженный мягкой пружинной подвеской в процессе работы машины с помощью виброизмерительной аппаратуры определяют амплитуду колебаний в наиболее вероятной плоскости появления т-уравновешенности. Механическая система установки для уравновешивания электродвигателей в сборе (рис. 57) представляет собой упруго соединенную с фундаментам через мягкие пружины 2 тяжелую плиту /, на которой установлены уравновешиваемый двигатель 3, а также реагирующие соответетвенго только на статическую и динамическую неуравновешенности ротора датчики 4 п 5, массы Шс и Шц которых упруго соединены с плитой через пружины жесткостью и кд,, а также посредством вязкого трения через демпферы Со и Сд. О неуравновешенности судят по амплитуде и фазе перемещения относительно плиты масс Шс и Шд. В табл., 29 приведена техническая характеристика станка ДБС-4, предназначенного для динамического уравновешивания прецизионных электродвигателей массой 30—300 кг в сборе иа ра бочих частотах вращения с точностью по классу О (ГОСТ 12327—66)  [c.343]


Смотреть страницы где упоминается термин Электродвигатель - Статические характеристики : [c.159]    [c.193]    [c.233]    [c.547]    [c.105]    [c.124]    [c.6]    [c.17]    [c.31]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.545 ]



ПОИСК



Характеристика статическая

ЭЛЕКТРОДВИГАТЕЛИ 357 ЭЛЕКТРОДВИГАТЕЛИ

Электродвигатели Характеристика

Электродвигатель



© 2025 Mash-xxl.info Реклама на сайте