Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Печи сравнения

Суточная производительность и расход кокса иа тонну выплавленного чугуна зависят от размеров печи. Сравнение работы  [c.521]

Для плавки литейных сталей как правило, используют дуговые и индукционные печи. В последнее время для плавки стали широко начинают использовать плазменно-индукционные печи (рис. 4.45). Производительность таких печей по сравнению с индукционной на 25—30 % выше, а расход электроэнергии значительно ниже.  [c.165]


Ванны сравнения и печи  [c.139]

К недостаткам таких термостатов следует отнести, во-первых, крайнюю трудность избежать перемещения порошка, приводящего к неравномерности засыпки, и, во-вторых, худшую, чем в термостатах с перемешивающейся жидкостью или печах, однородность температурного поля. В термостате, показанном на рис. 4.3, при 400 °С разность температур в пределах 25 см может достигать 0,4 С. При 900 °С это различие возрастает по меньшей мере до 1 °С. При сравнении термометров, естест-  [c.142]

Гораздо чаще, чем проточные термостаты, применяются печи различных модификаций, от простых с нихромовым нагревателем, для работы в интервале до 1100 °С, до более сложных с молибденовым нагревателем, работающих в инертной атмосфере. Для интервала температур до 1100 °С достаточно удобно устройство печи, показанное на рис. 4.4. Нагреватель ее наматывается лентой из нихрома (сплав 80% N1 и 20% Сг), каркас— любая огнеупорная труба, подходящая для работы в воздухе при 1100 °С. Нагревательная обмотка чаще одна, однако для улучшения однородности температуры вдоль печи она может состоять из трех секций, позволяющих шунтированием уменьшить ток в центральной секции. В зависимости от отношения длины трубы к ее диаметру может возникнуть необходимость дополнительного нагрева с торцов металлического блока сравнения, как показано на рис. 4.4. Поддержание температуры лучше всего осуществляется промышленным регулятором температуры, который управляет током только в основной секции нагревателя. Для избежания чрезмерных усложнений соотношение токов через шунт, охранные нагреватели и основной нагреватель подбирается вручную. В устройстве печи, показанном на  [c.142]

Существуют многочисленные методы сравнения интервалов плавления в одном из наиболее полезных применяется обратная кривая плавления и строится гистограмма, аппроксимирующая температурную производную кривой плавления. Часть полного времени плавления, в течение которого слиток остается В данном интервале температур, строится в зависимости от средней температуры интервала. При медленных нагревах температура печи остается практически постоянной за время плавления всего слитка, так что скорость подвода тепла к слитку также практически постоянна. В этих условиях часть полного времени плавления, проведенного в данном температурном интервале, близка к доле металла, плавящегося в этом интервале. Другой метод состоит в сравнении доли общего времени плавления, проведенного в данном интервале температур плавления, после быстрого и медленного затвердеваний,..  [c.173]


Комбинацию этих двух эффектов называют просто эффектом размера источника , а его величина при поочередном наблюдении черного тела в печи и ленточной вольфрамовой лампы в нормальных условиях достигает значений в несколько десятых долей процента. Это показано на рис. 7.36. Величину компонента, обусловленного дифракцией, нетрудно вычислить [13]. На рис. 7.36 он показан штриховой линией. При сравнении вольфрамовой ленты шириной 2 мм, но очень длинной, с черным телом в печи эффект размера источника будет достигать примерно 0,2%. При сравнении двух черных тел эффект размера источника будет зависеть от различия в распределении яркостей в двух печах. Как и во всех процессах дифракции и рассеяния, эффект возрастает очень быстро при малых углах и очень медленно спадает при больших углах, как ясно из рис. 7.36.  [c.379]

Газовое цианирование по сравнению с газовой цементацией обладает более низкой температурой и меньшей продолжительностью процесса вдвое большим сопротивлением цианированного слоя износу меньшим ростом зерна в сердцевине (что дает возможность производить закалку деталей непосредственно из печи).  [c.148]

Из рассмотрения данных теплового баланса отражательных печей [179], полученных на Средне-Уральском медеплавильном заводе. Красноуральском медеплавильном комбинате и на других предприятиях, было установлено, что потери тепла через кладку составляют от 3,5 до 5%. Хотя величина этих потерь незначительна по сравнению с потерями, вызванными отходящими газами (около 60%), тем не менее потери тепла через кладку являются наибольшими среди остальных видов потерь. Заметим, что приведенные цифры тепловых потерь через кладку были получены при значениях степени черноты футеровки, равных 0,61—0,65 [8]. Увеличивая коэффициент е, можно повышать значение к. и. д. печи.  [c.213]

Преимущества индукционных тигельных печей по сравнению с электрическими печами сопротивления следующие  [c.245]

Для сравнения кинетики теплоподвода к лепешкам в различных печах использовались параметрические числа Пх = т/тк и П,в = 9в/(<7в-Ь <7в)- Результаты расчета зависи-  [c.159]

Коренное улучшение условий труда благодаря резкому уменьшению выделения тепла, газов и твердых частиц по сравнению с пламенными печами. Это приводит к уменьшению текучести персонала, характерной для цехов, оборудованных нефтяными и газовыми печами.  [c.209]

Технико-экономические показатели индукционных тигельных печей говорят о высокой эффективности этого оборудования. При плавке алюминия и медных сплавов угар металла сокращается для различных видов шихты и марок сплавов на 30—60% по сравнению с газовыми и мазутными печами при плавке стали уменьшение расхода легирующих элементов по сравнению с дуговыми печами доходит до 50% [41 ] при выплавке в индукционных печах синтетических чугунов уменьшается в 3—4 раза по сравнению с плавкой в вагранках количество растворенных в металле газов, снижается в 1,5—2 раза брак по литью, а главное — применяется более дешевая шихта, включающая стальной лом и не содержащая литейного чугуна, что позволяет высвободить часть доменного парка для увеличения выпуска передельного чугуна [27].  [c.265]

Газовая цементация имеет ряд преимуществ по сравнению с цементацией в твердом карбюризаторе можно получить заданную концентрацию углерода в слое сокращается длительность процесса обеспечивается возможность полной механизации и автоматизации процесса значительно упрощается последующая термическая обработка деталей, так как закалку можно проводить непосредственно из цементационной печи.  [c.77]

Заметной коррозии подвергаются теплообменники труба в трубе. Однако из-за более толстых стенок труб их разрушение происходит медленнее по сравнению с кожухотрубными теплообменниками. Интенсивно разрушаются трубы в огневых печах, и особенно быстро сокращается срок их службы, когда в этих печах подогревают недостаточно обезвоженные, обессоленные и сероводородсодержащие нефти.  [c.168]


При работе программы расчета себестоимости все спроектированные переходы фиксируются н памяти ЭВМ по всем вариантам функционирования системы. Стандартная подпрограмма расчета себестоимости выбирает оптимальный технологический нроцесс изготовления заготовки путем сравнения экономической эффективности рассмотренных процессов. На печать выдается наиболее экономичный вариант технологического процесса. На решение задачи машина затрачивает 2,0...2,5 мин.  [c.224]

Электропечи обладают существенными преимуществами по сравнению с топливными печами обеспечивают большие скорости нагрева и высокую производительность, легкость и точность регулирования теплового режима, возможность нагрева отдельных участков изделия, легкость герметизации и возможность нагрева в вакууме, лучшие условия труда, более высокий КПД (отсутствуют потери с уходящими газами). Основным недостатком таких печей является большая стоимость электроэнергии по сравнению со стоимостью топлива. Условия теплообмена в рабочем пространстве электропечей определяются способом преобразования электрической энергии в тепловую.  [c.173]

Данная керамика (классы IX и X) обладает пониженными электрическими и механическими свойствами, но ее производство допускает применение простой технологии (технологическая схема 1) при использовании обычных печей с температурой обжига 1320° С. Керамическая масса обладает высокой пластичностью, что позволяет оформлять крупные изоляторы различных типов. В табл. 10.4, для сравнения приведены также свойства электротехнического фарфора.  [c.152]

Продолжается усовершенствование системы комплексной загрузки доменных печей. К 1957 г. производительность их доводится до 3—4 тыс. т чугуна в сутки, а количество автоматических функций возрастает более чем в 10 раз по сравнению с первым опытом автоматической загрузки в 1932 г. [5]. В настоящее время действует единая автоматическая загрузочная система верха и виза доменной печи. Созданы специализированные вычислительные машины для решения задачи контроля комплексных параметров, определяющих ход доменного процесса. Цифровая управляющая машина применяется институтами ВНИИЭМ, Донецким индустриальным и заводом Азовсталь , разрабатывающими систему комплексной автоматизации типовой доменной печи. На Азовстали в промышленной эксплуатации находится система автоматического вращающегося распределителя шихты с управляющими вычислительными машинами. Осуществляются научно-исследовательские и опытные работы по созданию и внедрению в доменное производство бесконтактной электроавтоматики, ионных преобразователей и другого современного электрифицированного оборудования [48].  [c.121]

Трещины возникают при ковке в случае слишком больших обжатий по сечению, при этом растрескивается сердцевина заготовки. Кроме того, их образование может быть вызвано неправильно выбранным соотношением массы кузнечного инструмента и поковки. Их появлению способствует также возникающий вследствие быстрого нагрева температурный градиент между центральной и периферийной частями поковки. Термические трещины образуются, если заготовку помещают в слишком горячую печь или нагревают очень быстро. Вследствие более быстрого нагрева внешних слоев заготовки и их большего расширения по сравнению с сердцевиной происходит ее внутреннее растрескивание. Особенно часто это происходит при обработке больших заготовок или изделий, при этом большое значение имеет их теплопроводность.  [c.71]

Преимущество электропечи заключается и в более быстрой завалке (15—20 мин) по сравнению с мартеновской печью, завалка которой продолжается 2,5—3 ч. Объем электропечи используется значительно лучше, здесь шихта заполняет весь полезный объем, тогда как в мартеновской печи необходимо оставлять свободное пространство для отхода газов. В итоге удельная производительность электропечи, отнесенная к 1 м полезного объема, в 2—3 раза выше по сравнению с мартенами.  [c.16]

Преимущества электропечей заключаются также в ускорении процесса плавки металла. Дело в том, что завалка шихтой электропечи по сравнению с мартеновской печью сокращается с 2,5—3 ч до 15—20 мин. В электропечах последних конструкций предусмотрена прогрессивная и полностью механизированная завалка сверху, что значительно облегчает труд сталеваров и повышает его производительность.  [c.31]

Стоимость 1 т никеля, полученного в электропечах примерно на 58% ниже, чем в шахтных печах при этом на 27% снижается стоимость обработки в технологической установке и почти на 77% сокращаются затраты в систему топливоснабжения в индукционных электропечах общая стоимость плавки 1 т первичных алюминиевых сплавов обходится примерно на 21%, а вторичных — на 45 /о ниже, чем в отражательных печах применение электроэнергии в термообработке позволяет в 2—3 раза уменьшить потери металла на угар по сравнению с пламенными печами.  [c.49]

Стальная пластина толн1иной 26 = 400 мм нагревается в печи, имеющей постоянную температуру /ж = 800°С. Температура пластины в момент помещения ее в печь была всюду одинаковой н равной /о = 30°С. Коэффициент теплоотдачи к поверхностп пластиггы в процессе нагрева оставался постоянным и равным а = 200 Вт/(м Х Х С). Два других размера пластины велики по сравнению с тол-  [c.49]

Другой тип горелок с испоЛ1 ванием особенностей закрученного потока для организации и повышения эффективности рабочего процесса сжигания топлива — горелки для вращающихся цементных обжигательных печей. К ним относится и серия горелок ГВП, созданная ГипроНИИгазом (г. Саратов) и предназначенная для сжигания природного газа для обжига цементного клинкера (рис. 1.14). В направляющую трубу вставлен завихритель, имеющий со стороны сопла тангенциально расположенные лопатки а. Противоположный конец завихрителя соединяется с тягой и с рычагом управления. Устройство горелки позволяет изменять степень закрутки потока, что обеспечивает управление рабочим процессом и регулирование длины факела. Горелка позволяет полностью сжигать газ при коэффициенте избытка воздуха а = 1,02- 1,05. Применение горелки такой конструкции повышает производительность печей на 4-4,5% по сравнению с их работой на горелках обычной конструкции. При этом улучшается и качество клинкера. Дальнейшее совершенствование горелок этого типа бьшо связано с созданием вихревой реверсивной горелки для вращающихся трубчатых печей ВРГ, отличающейся от описанной тем, что в ней предусмотрена возможность изменения направления закрутки.  [c.36]


В подпрограмме OUTP проводится сравнение текущего момента времени TIME с временами вывода результатов, которые заданы массивом TV. В случае TIME > TV (L) реализуется вывод на печать, да-  [c.49]

На рис. 4.4 приведена схема конвективной трубчатой печи с горизонтальным расположением труб. Регулирование температуры дымовых газов на входе в конвективный пучок достигается,. рширкуля-пиеи уходящих газов. Преимущест м печей конвективного,. типа является большая степень равномерности наг ва 1-руб по сравнению  [c.259]

В ванных печах в качестве рабочих сред используются расплавы солей (NaNOз, KNOз, Na N, K N и др.), которые имеют более высокую теплопроводность, по сравнению с газами, и более равномерное распределение температур, что обеспечивает высокую равномерность нагрева изделий. Вследствие больших коэффициентов теплоотдачи от жидкости к металлу обеспечивается высокая скорость нагрева в ваннах. Конструкция ванной печи (рис. 3.26) определяется условиями нагрева тигля, выполненного из жароупорной стали. Обогрев тигля производится с помощью горелок  [c.170]

Иногда сушку и запекание пропитанной лаком изоляции осуществляют инфракрасным облучением. Источником такого облучения служат специальные лампы накаливания. Температура нити накала этих ламп несколько нг1же, чем у обычных осветительных ламп, что обеспечивает большой срок службы кроме того, в этих лампах по сравнению с осветительными меньшая часть электроэнергии превращается I видимый свет, а большая — в тепловое (инфракрасное) излучение. Лампы имеют отражатели или же непосредственно на баллон лампы наносят зеркальный слой, чтобы поток лучей можно было направить желаемым образом. Инфракрасные лампы устанавливают на штативах вблизи нагреваемого изделия (для ремонтных работ, когда требуется произвести сушку на месте, а также для сушки особо крупных изделий, для которых потребовались бы слишком большие печи) либо в специальных печах. Пример такой печи для сушки пропитанных лаком якорей схематически изображен на рис. 6-16. Сушильные устройства могут быть конвейерного типа В них подвергаемые сушке изделия движутся на бесконечной ленте сквозь туннельную печь, в которой установлен ряд ламп инфракрасного излучения или электрических плит. Преимущества инфракрасного обогрева по сравнению с паровым или электрическим обогревом заключаются в значительном ускорении процесса сушки и сокращении площади сушильного помещения, а также (по сравнению с электрическим обогревом) в сокращении расхода энергии.  [c.134]

Следует отметить, что при выбранной для термического анализа скорости подъема температуры йТ / йт=9- -10° С/мин.) деструктивные процессы в исследованных объектах могли пройти не полностью. Поэтому суммарные потери в весе по данным термовесового анализа могли оказаться (и в ряде случаев оказались) заниженными по сравнению с потерями в весе при более длительном нагревании. Для нахождения максимальных потерь исследуемые образцы нагревались в муфельной печи на воздухе при различных температурах до постоянного веса. Снятые таким образом кривые время (часы)—потери в весе (%) представлены на рис. 4. Прерывистыми линиями на этих рисунках обозначены теоретически рассчитанные пределы потерь в весе за счет удаления органической части связующего линия I) и, сверх того, за счет дегидроксилизации силиката линия II).  [c.331]

Материалы, которые выдерживают испытание по определению несгораемости элементарных материалов, после помещения их в печь с температурой 750 С на 5 мин, не вызывают по показаниям термопары на поверхности или внутри материала подъема температуры выше чем на 30 С по сравнению с температурой воздуха в нечи в начале испытания и не воспламеняются после помещения в такую печь на 30 с.  [c.300]

Крепежные детали паровых турбин работают в условиях температур, не превышаюших 565 °С. Высокие эксплуатационные свойства материала в этих условиях обеспечиваются применением хромомолибденованадиевых сталей. Наибольшая релаксационная стойкость в этих сталях достигается в результате дополнительного легирования их такими элементами, как ниобий и титан, образуюшими термически устойчивые карбиды НЬС и Т1С. Существенное влияние на свойства крепежной стали оказывает способ ее выплавки. Так, применение электрошлакового переплава позволяет получить более высокие служебные свойства по сравнению со свойствами металла, выплавленного в дуговой печи.  [c.41]

Рост производства стали будет происходить за счет преимущественного развития конвертерного и электроплавильного способов производства стали при постепенном снижении выплавки стали в мартеновских печах, что расширит диапазон марочного сортамента и повысит качество стали. Доля электростали в общем объеме производства стали составит в 1985 г. 14,8% по сравнению с 10,7% в 1980 г., при этом удельный расход электроэнергии на выплавку 1 т стали возрастет соответственно с 90,9 до 112,2 кВт-ч/т. Большое распространение получат установки непрерывной разливки стали (УНРС). Предусматривается довести в 1985 г. выплавку стали с применением УНРС до 22,8% всей выплавки стали вместо 11,8% в 1980 г. На каждую тонну литой заготовки, разлитой на УНРС, расходуется дополнительно 25—28 кВт-ч электроэнергии. Однако при этом снижается расходный коэффициент металла для получения заготовки с 1,2 до 1,05 и достигается экономия топлива на нагрев слитков в объеме 36—45 кг/т (в условном топливе) и экономия электроэнергии на прокат слитков на обжимных станах —18— 20 кВт-ч/т. С целью повышения качества металла предусматривается широкое развитие обработки стали синтетическими шлаками, инертными газами, применение вакуумирования, электрошлакового и вакуумно-дугового переплава, микролегирования и других прогрессивных методов. При этом удельный расход электроэнергии повышается в 2—3 раза по сравнению со средним удельным расходом электроэнергии на выплавку электростали.  [c.53]


Смотреть страницы где упоминается термин Печи сравнения : [c.150]    [c.444]    [c.9]    [c.302]    [c.80]    [c.241]    [c.160]    [c.50]    [c.248]    [c.160]    [c.102]    [c.155]    [c.364]    [c.232]    [c.255]    [c.173]    [c.121]   
Температура (1985) -- [ c.39 ]



ПОИСК



Ванны сравнения и печи

Сравнение МКЭ и МГЭ

Сравнение газовых и электрических печей по расходу топлива и по стоимости топлива и электроэнергии

Сравнение скоростей нагрева стали в печах и ваннах со скоростями охлаждения при закалке



© 2025 Mash-xxl.info Реклама на сайте