Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Максвелла —» Больцмана

Работы Максвелла и Больцмана составили один из наиболее важных этапов в понимании тепловых величин. С тех пор стало возможным определять температуру либо через макроскопические термодинамические величины, такие, как теплота и работа, либо (с равным основанием и тождественными результатами) как величину, которая характеризует распределение энергии между частицами системы. Однако ограничение кинетической теории Максвелла и Больцмана заключалось в том, что она применима только к системам невзаимодействующих частиц, т. е. исключительно к идеальным газам, а на практике — к реальным газам в пределе низких давлений или высоких температур.  [c.20]


История открытия второго начала термодинамики представляет собой, возможно, одну из самых впечатляющих, полную драматизма, глав общей истории науки, последние страницы которой еще далеко не дописаны. Потребовались усилия гениев многих наций, чтобы приоткрыть завесу над сокровенной тайной природы, которую представляло собой второе начало термодинамики. Имена знаменитого французского ученого и инженера Карно, выдающегося немецкого ученого Клаузиуса, великих ученых англичан Томсона (лорда Кельвина) и Максвелла, австрийца Больцмана и немца Планка, замечательного русского ученого Шиллера и других неразрывно связаны с открытием и развитием этого фундаментального закона.  [c.153]

Классическая и квантовые статистики. Физическая статистика, изучающая свойства невырожденных коллективов, называется классической статистикой. Ее связывают с именами Максвелла и Больцмана и называют статистикой Максвелла — Больцмана.  [c.115]

Благодаря проникновению в акустику, гидродинамику, оптику и в явления капиллярности, механика некоторое время как бы преобладала над всеми этими областями. Труднее было ей вобрать в себя новую область науки, возникшую в XIX в., — термодинамику. Если один из двух основных принципов этой науки — принцип сохранения энергии — может быть легко объяснен на основании понятий механики, то этого нельзя сказать о втором — о возрастании энтропии. Работы Клаузиуса и Больцмана по изучению аналогии термодинамических величин с некоторыми величинами, играющими роль в периодических движениях, работы, которые и сейчас вполне современны, не смогли все-таки связать обе точки зрения. Но замечательная кинетическая теория газов Максвелла и Больцмана и более общая доктрина — так называемая статистическая механика Больцмана и Гиббса — показали, что динамика, если дополнить ее понятиями теории вероятности, позволяет интерпретировать основные положения термодинамики.  [c.641]

И ее континуальным поведением на макроскопическом уровне. После основополагающих исследований Максвелла и Больцмана в прошлом столетии эта часть теории получила большое развитие в период между двумя мировыми войнами. Основные результаты этих исследований — объяснение макроскопического поведения газов и вычисление коэффициентов вязкости и теплопроводности, исходя из постулируемых законов взаимодействия между парой молекул газа. Помимо самостоятельного значения, эти исследования дают образец того, что надо было бы сделать для других агрегатных состояний материи (жидкостей, твердых тел, многофазных систем).  [c.35]

По-видимому, то же соотношение имеет место и для коэффициента внутренней теплопроводности. В самом деле, согласно исследованиям Максвелла, Клаузиуса, Больцмана и др., с помощью кинетической теории газов оказалось возможным связать между собой к и. ц соотношением  [c.111]


Уравнение (3-11) имеет форму закона Больцмана распределения энергии и закона Максвелла распределения молекул по скоростям и известно как функция распределения Максвелла — Больцмана.  [c.98]

Очевидно, что конкретный механизм рассеяния электронов играет для термоэлектричества важную роль. Можно, например, предположить, что электроны, имеющие большую скорость, должны рассеиваться атомами решетки под меньшими углами, чем электроны с меньшей скоростью. Другими словами, средняя длина свободного пробега электронов будет зависеть от их кинетической энергии. Это верно в целом, но конкретная взаимосвязь длины пробега и энергии сложна и сильно зависит от электронной структуры решетки. Сложность связи между длиной пробега и энергией электронов не дает возможности получить количественное описание термоэлектричества, хотя качественно картина явления проста. Другими словами, наших сведений о поверхности Ферми реального металла недостаточно для вычисления термо-э.д.с. Следует отметить, что для полупроводников ситуация проще, поскольку число электронов и дырок, участвующих в процессе проводимости, значительно меньше. В этом случае модель электронного газа, в которой частицы подчиняются статистике Максвелла — Больцмана, лучше отражает истинную природу явления.  [c.268]

Как отмечалось выше, скорости и энергии частиц в плазме распределяются по закону Максвелла — Больцмана. Средняя квадратичная скорость частиц может быть определена из равенства  [c.55]

С. Аррениус и Я. Вант-Гофф независимо друг от друга пришли к уравнению, связывающему константу скорости, температуру и энергию активации, причем это уравнение построено по типу уравнения Максвелла — Больцмана  [c.297]

Карбидообразование 338, 340 Максвелла — Больцмана распределе-  [c.553]

При обсуждении закона Дюлонга и Пти отмечалось, что если исходить из классических представлений и считать электроны в металле свободными, так же как молекулы идеального газа, подчиняющиеся статистике Максвелла—Больцмана (рис. 6.6), то такой газ электронов имеет большую теплоемкость (с учетом вклада электронов теплоемкость в 1,5 раза больше, чем это следует из закона Дюлонга и Пти) из-за того, что энергия, подводимая  [c.176]

Рис. 6,6, Распределение Максвелла — Больцмана при различных температурах Рис. 6,6, <a href="/info/21236">Распределение Максвелла</a> — Больцмана при различных температурах
Из (6.46) видно, что /=1 для Ег Е и для Е>Е при Т= =0К. При очень высоких температурах, когда квТ >Е-р, и больших энергиях ехр [( — )/( в ) распределение Ферми (6.46). переходит в классическое распределение Максвелла — Больцмана  [c.178]

Для объяснения такой закономерности Друде положил, что основная часть теплового потока при наличии градиента температуры переносится электронами проводимости. По Друде, металл представляется в виде ящика, заполненного свободными электронами, для которых справедливы законы кинетической теории газов. Для того чтобы металл был электронейтральным, считалось, что ящик заполнен соответствующим количеством положительно заряженных и более тяжелых частиц (ионов), которые неподвижны. Далее предполагалось (Лорентц), что электроны распределены по скорости в соответствии с функцией распределения Максвелла— Больцмана  [c.192]

В 1927 г. А. Зоммерфельд для устранения указанного противоречия, сохранив основные исходные положения теории, перенес в нем приемы новой квантовой статистики Ферми — Дирака, указав, что для электронов, подчиняющихся принципу запрета Паули, распределение Максвелла — Больцмана должно быть замене-194  [c.194]

Заменив всюду распределение Максвелла — Больцмана на распределение Ферми— Дирака, Зоммерфельд получил для /Сэл и а выражения  [c.195]


При и (л , y,z) = 0 из (49) сразу же следует распределение Максвелла (43), которое можно рассматривать теперь как частный случай полученного Больцманом более общего распределения. Закон (49) получил в физике название распределения Максвелла—Больцмана.  [c.76]

Теория теплоемкости. Согласно закону Дюлонга и Пти, установленному еще в 1811 г., молярная теплоемкость тел равна 25 Дж/К и не зависит от температуры. Известно, что этот закон является приближенным, особенно значительные отклонения от него наблюдаются в области низких температур. Теория теплоемкости, развитая на основе распределения Максвелла— Больцмана, давала хорошее совпадение с экспериментом лишь в области комнатных температур. Основной причиной этого служило то, что она опиралась на классический закон равномерного распределения энергии по степеням свободы. Формула Планка (108) представляла собой новый закон распределения энергии.  [c.160]

Максвелла—Больцмана статистика 322 Марганец 161, 273, 275, 336, 356, 360, 427,  [c.929]

Функция распределения есть функция энергии и температуры, и для стационарных состояний она не зависит от времени. Так как энергия есть собственное значение оператора Гамильтона квантовой системы, то она не зависит от координаты, поэтому не будет зависеть от координаты и функция распределения о= о(Е, Т), где fo(E, Т) —функция Ферми— Дирака или Максвелла—Больцмана.  [c.101]

Оператор Фоккера—Планка, стоящий в правой части уравнения, описывает необратимость поведения частицы, связанную с трением (первый член) и диффузией в импульсном пространстве (второй член). Нетрудно убедиться, что стационарное решение, релаксацию к которому описывает уравнение Фоккера—Планка, соответствует распределению Максвелла—Больцмана  [c.73]

В результате получаем, что частным равновесным рещением кинетического уравнения Больцмана в отсутствие внешнего поля является распределение Максвелла  [c.117]

Больцман также доказал, что равенство (7.34) является не только достаточным, но и необходимым условием обращения в нуль интеграла (7.33). Следовательно, распределение Максвелла является единственным рещением кинетического уравнения Больцмана в равновесном состоянии.  [c.117]

Локальное распределение Максвелла (8.6) должно обращать в нуль и левую часть кинетического уравнения Больцмана  [c.137]

Метод Чепмена—Энскога. В 1911—1920 гг. Чепмен и Энског разработали метод решения кинетического уравнения Больцмана, основанный на теории возмушений. По этому методу функция распределения разлагается в степенной ряд по малому параметру е, используя в качестве нулевого приближения локальное распределение Максвелла о  [c.143]

Работы Клаузиуса и Максвелла составляют первый период в развитии молекулярно-кинетической теории материи. Второй ее период связан с работами Больцмана, подытоженными в его Лекциях по теории газов 1896 и 1898 гг., и с работами Гиббса, изложенными в монографии Основные принципы статистической механики (1902).  [c.182]

Молекулярно-кинетический подход к исследованию опирается на изучение молекулярного (микродискретно-го) строения газа и поэтому лучше соответствует реальным условиям. Однако использование дифференциальных уравнений в частных производных требует возврата к гипотезе о квазисплошности среды и квазинепрерывности полей ее характеристик. Возникающее противоречие снимается с помощью перехода к макроскопическому описанию свойств и процессов через микроскопические свойства отдельных молекул среды, структура и элементарные процессы в которой дискретны. Этот переход осуществляется с помощью функций распределения Максвелла или Больцмана. При этом свойства среды выступают как осредненные по всем молекулам и как непрерывные функции координат и времени.  [c.26]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-види-мому, связан с минимальными физическими погрешностями, что существенно для теории подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому молю гетерогенной системы в силу конечности его размеров и дискретности его 1компонентов неприменимы точные математические методы. Мож но полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее  [c.33]

Идеи статической физики получили блестящее развитие в трудах Д. Максвелла, Л. Больцмана, М. Смолу-ховского, М. Планка, А. Эйнщтейна. Изложенные соображения лежат в основе понимания исходных идей термодинамики необратимых процессов, получающей в настоящее время все большее распространение.  [c.28]

В сильнонеравновесных ситуациях, когда ф-ции распределения компонент сильно отличаются от распределений Максвелла и Больцмана, понятием Т. к, п, также пользуются, вводя, его согласно ур-нию  [c.64]

Максвелла-Больцмана распределение 20 МБМВ (Международное бюро мер и весов) 38, 40. 41  [c.444]

Пусть атомарный газ находится в замкнутом объеме при изотермических условиях. В том же объеме присутствует, естественно, и электромагнитное поле, обусловленное тепловым излучением. Как было выяснено в главе XXXVI, рассматриваемая система, состоящая из газа и теплового излучения, будет находиться в термодинамическом равновесии, если газ и излучение обладают одной и той же температурой, атомы подчинены распределению Максвелла—Больцмана, а излучение — формуле Планка. Однако термодинамическое равновесие системы не означает, что энергия каждого атома газа сохраняется неизменной. Между атомами и полем осуществляется постоянный обмен энергией. Атомы излучают и поглощают фотоны, переходя из одних состояний в другие происходит и обмен импульсами между атомом и полем — импульс изменяется в процессе испускания и поглощения фотона (см. 184). Между атомами газа осуществляется также обмен импульсами и энергией при их столкновениях между собой. Однако ни один из этих процессов не нарушает термодинамического равновесия системы в целом и соответствующих ему законов распределения атомов по энергиям и скоростям, равно как и распределения энергии излучения по спектру.  [c.735]


Первую теоретическую попытку оп[)еделеиия вида функции Кирхгофа предпринял русский физик В.А. Михельсон в 1887 г. Для этого ему пришлось прибегнуть к определенным предположениям относительно механизма возннкновения излучения. Михельсон считал, что излучение обязано своим происхождением колебаниям атомов излучающего тела, которые распределены по скоростям в соответствии с законом Максвелла — Больцмана (49). Статистические идеи впервые применяются к теоретическому анализу совершенно иного физического явления. Хотя Ми-хельсону удалось получить зависимость е(А,7), качественно совпадающую с экспериментальными данными, не все предположения его работ1>1 были достаточно обоснованы.  [c.152]

Теория Зоммерфельда. Выход из этого затруднения был ух азан Зом-мерфельдом [11, 12]. В п. 4 мы видели, каким образом Эйнштейну удалось объяснить наблюдаемое уменьшение теплоемкости 6 с температурой. Это достигалось заменой классического выражения, найденного в представлении о равномерном распределении средней энергии осциллятора, планковским выражением для средней энергии, полученном на основании квантовой гипотезы. Это соответствовало переходу от классической функции распределения Максвелла—Больцмана  [c.322]

Подставляя (7.42) в (7.40), найдем, что а з(г) = о(г) при условии, что uJ VrUo. Следовательно, равновесным решением кинетического уравнения Больцмана для газа во внешнем поле является распределение Максвелла — Больцмана  [c.118]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

В 38 мы нашли единственное известное точное решение кинетического уравнения Больцмана — локальное распределение Максвелла V, t). Оно, как мы видели, описывает движение газа (идеальной жидкости), не обладаюшего ни вязкостью, ни теплопроводностью. Для того чтобы описать более реальное движение жидкости (газа), приходится искать приближенные решения уравнения Больцмана.  [c.143]


Смотреть страницы где упоминается термин Максвелла —» Больцмана : [c.377]    [c.64]    [c.286]    [c.25]    [c.49]    [c.297]    [c.77]    [c.152]    [c.82]    [c.322]    [c.120]    [c.141]    [c.237]   
Физика твердого тела Т.2 (0) -- [ c.43 , c.45 ]

Физика твердого тела Т.1 (0) -- [ c.43 , c.45 ]



ПОИСК



Больцмана — Максвелла распределение линеаризация

Закон распределения Максвелла — Больцмана

Максвелл

Максвелла — Больцмана распределени

Максвелла — Больцмана распределение во внешнем поле

Максвелла — Больцмана распределение вывод

Максвелла — Больцмана распределение локальное

Максвелла — Больцмана распределение физический смысл

Максвелла — Больцмана функция

Максвелла — Больцмана функция распределения

Максвелла —» Больцмана в приближении времени релаксации

Максвелла —» Больцмана вычисление в приближении времени

Максвелла —» Больцмана линеаризация

Максвелла —» Больцмана неравновесная электронов

Максвелла —» Больцмана равновесная электронов

Максвелла —» Больцмана релаксации

Максвелла —» Больцмана скорость изменения за счет столкновений

Максвелла-БоЛьцмана распределение плотности вероятности

Максвелла—Больцмана распределение

Максвелла—Больцмана статистика

Основные термодинамические функции и уравнение состояния идеального газа Распределение Максвелла—Больцмана

Распределение Максвелла — Больцмана для систем с аддитивной энергией

Распределение Максвелла — Больцмана и невырожденные полупроводники

Распределение Максвелла — Больцмана сравнение с распределением Ферми — Дирака

Распределение Максвелла—Больцмана для идеального классического газа

Распределение частиц по энергиям. Функции распределения Ферми — Дирака и Максвелла — Больцмана

Уравнение Максвелла — Больцмана со столкновениями

Уравнение Максвелла—Больцмана



© 2025 Mash-xxl.info Реклама на сайте