Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потеря устойчивости элементов конструкций

Явление потери устойчивости элементов конструкции очень опасно. Часто причиной разрушения конструкций и сооружений является не нарушение прочности, а потеря устойчивости равновесия отдельных элементов. В истории техники известно много случаев крупных аварий и катастроф, когда вследствие потери устойчивости отдельных элементов конструкции сооружения разрушались.  [c.405]

Потеря устойчивости элементов конструкций. Устойчивость теряют главным образом листовые элементы, в которых возникают собственные напряжения сжатия, превышающие критическую величину. Практически могут иметь место два расчетных случая необходимо определить, наступит потеря устойчивости или нет в тех или иных конструктивных элементах после сварки  [c.45]


Погонная энергия 32 Подготовка кромок под сварку 223 Подогрев при сварке 79 Пористость — Влияние на прочность 161 Потеря устойчивости элементов конструкций 45  [c.373]

Потеря устойчивости первоначальной формы равновесия для большинства элементов конструкций является причиной исчерпания их работоспособности, а это может привести к катастрофе всей конструкции. Такие случаи не единичны. При этом потеря устойчивости даже, казалось бы, второстепенным элементом конструкции может оказаться роковой для всей конструкции в целом. В истории техники известен, например, случай, в котором потеря устойчивости элемента соединительной решетки в одном из элементов мостовой фермы привела к катастрофе очень большого пролетного мостового строения, находившегося еще в процессе постройки (Квебек, Канада).  [c.279]

Общие замечания. При наличии в конструкции вязкоупругих элементов ее деформативные характеристики, а также прогибы независимо от характера приложенной нагрузки являются функциями времени. Анализ изменения во времени свойств вязко-упругой конструкции в случае статического нагружения приводит к понятиям мгновенной и длительной устойчивости [83, 135]. Очевидно, что в этом случае к совокупности требований, предъявляемых к проекту относительно величин предельных нагрузок и массы конструкции, добавляется требование к величине времени эксплуатации конструкции /э. Поскольку классическое определение критической нагрузки потери устойчивости вязкоупругой конструкции как нагрузки бифуркации в условиях статического нагружения наталкивается на известные противоречия, то понятие потери устойчивости такой конструкции следует обобщить, рассматривая потерю устойчивости как протяженный во времени процесс выпучивания конструкции. Естественной характеристикой такого процесса является критическое время потери устойчивости конструкции /кр, которое в принципе можно определить из условия достижения прогибом конструкции гОг некоторого критического значения ш  [c.237]

Расчет упругих систем на устойчивость при повышенных температурах важен прежде всего для авиационных конструкций. Аэродинамический нагрев обшивки летательных аппаратов, имеющих сверхзвуковую скорость полета, приводит к неравномерному распределению температур в конструкции появляющиеся при этом термические сжимающие напряжения могут вызвать потерю устойчивости элементов обшивки.  [c.117]


Остаточные сварочные сжимающие напряжения могут быть также причиной потери устойчивости листовых сварных, конструкций (резервуаров различного рода, трубопроводов), а также колонн и стоек. Потеря устойчивости элементов или конструкций в целом может иметь место даже при отсутствии рабочих напряжений, если уровень остаточных напряжений превысит критический.  [c.356]

Наиболее рациональной конструкцией подкрепленной сферической оболочки будет та, у которой происходит одновременно как потеря устойчивости всей конструкции в целом (обшивка с силовым набором), так и обшивки в клетках между элементами силового набора.  [c.370]

Сварочные деформации и перемещения по аналогии с напряжениями могут быть временными и остаточными. В зависимости от вызываемых искажений формы и размеров конструкции различают следующие виды перемещений укорочение, изгиб, потеря устойчивости, скручивание и др. Эти (как правило, сложные) перемещения конструкции можно представить в виде суммарного проявления отдельных элементарных видов деформаций в зоне сварных соединений. Поэтому основная задача — умение правильно определить элементарные виды деформаций в зависимости от режимов сварки, жесткости свариваемых элементов и других параметров, которые используются для расчета перемещений конструкции [17].  [c.410]

Нарушение прочности конструкции или его отдельного элемента может происходить в результате чрезмерной (упругой или пластической) деформации, потери устойчивости, разрушения.  [c.111]

Потеря устойчивости детали происходит при некотором определенном значении действующей на нее нагрузки, которая называется критической. Во многих случаях потеря устойчивости отдельных элементов приводит конструкцию к разрушению. Поэтому для указанных деталей, в частности для сжатых стержней, помимо расчета на прочность необходима проверка на устойчивость.  [c.241]

Внедрение в технику тонкостенных конструкций и создание высокопрочных конструкционных материалов привели к существенному снижению их веса. Это способствовало бурному развитию авиационной и ракетной техники, судостроения, энергетики, технологии и др. Однако чем тоньше элемент конструкции, тем он более гибок, тем в большей мере проявляется его способность к выпучиванию и потере устойчивости при сжатии. Поэтому неустойчивость — это беда (бич) всех тонкостенных конструкций.  [c.317]

Устойчивость есть свойство процессов движения и равновесия систем, в том числе медленных процессов типа ползучести. Под устойчивостью понимают их способность сохранять состояние равновесия или процесса движения во времени t под действием малых возмущений. Под неустойчивостью понимают способность систем при действии весьма малых возмущений получать большие перемещения. Понятие устойчивости, его определение и критерий должны быть неотделимы от практического представления о потере устойчивости конструкций и их элементов как о катастрофическом развитии их деформаций и перемещений.  [c.318]

Большой практический интерес представляют задачи устойчивости предварительно напряженных стержневых элементов конструкций. На рис. 3.3 тонкой линией показан прямолинейный стержень, который был нагружен силой Р (следящей или мертвой ), а затем шарнирно закреплен. После этого стержень был нагружен распределенной нагрузкой q (следящей или мертвой ) при расчете таких конструкций требуется определить критическую нагрузку q, при которой стержень может потерять устойчивость. Штриховыми линиями на рис. 3.3 показаны (качественно) возможные равновесные формы осевой линии стержня после потери устойчивости.  [c.94]

Потеря устойчивости означает практически полную потерю несущей способности конструктивного элемента и с этим явлением при проектировании необходимо считаться. Прежде всего следует по возможности избегать такого типа нагрузок, при которых возможна потеря устойчивости. Необходимо принимать и конструктивные меры. Нетрудно заметить, что наиболее ярко явление потери устойчивости проявляется в легких, тонкостенных конструкциях в сжатых оболочках и тонких стенках. Поэтому одной из мер повышения устойчивости является увеличение жесткости конструкции. В практике самолетостроения, ракетостроения и судостроения тонкостенные перегородки, баки, обшивка корпуса подкрепляются специальными профилями. Такая подкрепленная оболочка имеет достаточно высокую жесткость при сравнительно малом весе.  [c.121]


Математическая модель машины или аппарата отражает их рабочие процессы с известным приближением. Расчетные соотношения, входящие в математическую модель, как правило, отражают закономерности отдельных явлений, составляющих рабочий процесс, без учета взаимного влияния. Например, формулы для определения гидравлического сопротивления различных участков гидравлического тракта получены на основе экспериментов в идеализированных условиях (равномерное поле скоростей на входе, однородное температурное поле, отсутствие внешних возмущений и т. д.). В реальных конструкциях эти условия не соблюдаются. Поэтому иногда при разработке нов ых конструкций прибегают к техническому моделированию устройств, когда до постройки машины или аппарата их отдельные качества или итоговые характеристики изучаются на моделях в лабораторных условиях. Например, при продувке уменьшенных моделей самолетов или автомашин в аэродинамических трубах можно выявить их сопротивление движению и зависимость этого сопротивления от формы их отдельных элементов, устойчивость машины при дв ижении и режимы, опасные с точки зрения потери устойчивости, и т. д. Таким образом, техническое моделирование представляет собой разновидность экспериментального исследования, при котором изучаются характеристики рабочего процесса конкретной машины или аппарата на модельной установке.  [c.23]

В дальнейшем представляются две возможности можно бегло дать понятие о потере устойчивости упругого тела (конструкции или ее элемента) и привести примеры из истории техники, свидетельствующие о высокой опасности потери устойчивости и связанных с этим явлением катастрофах инженерных сооружений (примеры можно взять из книг [2, 32]), затем более подробно остановиться на потере устойчивости центрально-сжатого стержня. Но лучше начинать с рассмотрения сжатого стержня, а примеры аварий привести несколько позднее.  [c.189]

Можно утверждать, что достижение нагрузками критических значений равносильно разрушению конструкции, так как неустойчивая форма равновесия неминуемо будет утрачена, что связано с практически неограниченным ростом деформаций и напряжений. Особая опасность разрушения вследствие потери устойчивости заключается в том, что обычно она происходит внезапно и при низких значениях напряжений, когда прочность элемента еще далеко не исчерпана.  [c.561]

Конструкции из стеклопластиков имеют недостаточную жесткость, использование всего ресурса прочности их часто оказывается невозможным вследствие недопустимо больших перемещений. Тонкостенные конструкции разрушаются обычно вследствие потери устойчивости, а критические нагрузки определяются не прочностью, а модулем упругости. Если соединить титановый элемент с элементом из стеклопластика, например, усилить полку титановой балки элементом из стеклопластика, получится следующее.  [c.685]

При какой минимальной величине силы Р отдельные элементы конструкции потеряют устойчивость  [c.196]

Это—весьма вал<ное обстоятельство. В практике наблюдались значительные катастрофы (разрушение больших железнодорожных мостов и других инженерных сооружений) вследствие потери устойчивости одним из элементов конструкции. Разрушения от продольного изгиба особенно опасны, так как происходят обычно внезапно.  [c.322]

Несущая способность элементов конструкций включает в себя множество аспектов, связанных с разрушением материалов в результате растрескивания, потери устойчивости, усталости и ползучести при статическом и динамическом нагружении в условиях инертной или коррозионной окружающей среды и нагрева. Процесс разрушения волокнистых композиционных материалов еще более усложняется наличием множества независимых и взаимно накладывающихся форм разрушения, таких в частности, как излом волокон, потеря устойчивости отдельных волокон, рас-  [c.63]

Статическая устойчивость круговых цилиндрических оболочек из композиционных материалов как теоретически, так и экспериментально исследована гораздо полнее, чем устойчивость оболочек других форм. Причиной этого является то, что потеря устойчивости определяет один из основных расчетных случаев нагружения цилиндрических оболочек, широко применяемых в качестве элементов аэрокосмических и корабельных конструкций.  [c.234]

Боропластик, использованный для изготовления обшивок, имел перекрестную структуру армирования типа 0/ 45/90°, число слоев изменялось от 30 до 116. В каждом обшивочном листе содержалось не менее двух слоев с ориентацией 90° с тем, чтобы противостоять давлению топлива, исключить потерю устойчивости при сжатии и обеспечить малую ползучесть при нагружении при температуре 176° С. Выполняемые внахлестку ступенчатые соединения на внутренних концах проектировались так, чтобы нагрузка воспринималась осью вращения. Это предпринималось с целью смещения разрушения в испытуемую секцию и, следовательно, создания дополнительного запаса безопасности при проведении испытаний. Каждый внутренний облицовочный лист внутренней нервюры был усилен дополнительными слоями для повышения несущей способности. Зоны усиления технологических отверстий в титановых элементах конструкции также крепились к обшивочным листам с помощью ступенчатых соединений. Для того чтобы обеспечить высокое качество изготовления обшивочных листов, каждый слой препрега сначала выкладывался и раскраивался на шаблоне из пленки Майлар, затем в должной последовательности производилась сборка пакета препрегов и титановых прокладок в местах соединений, после чего производилось отверждение полученной заготовки.  [c.148]

К сожалению, не существует универсального простого метода, позволяющего точно определить, когда неустойчивые процессы на микроуровне порождают неустойчивость на макроуровне. В этом случае, так же как и при неустойчивости при сжатии элемента конструкции или конструкции в целом, важную роль играют начальные геометрические несовершенства, особенности закрепления и начальные напряжения. Как и в случае сложных задач, связанных с потерей устойчивости конструкций, для отыскания истинно начальных условий необходимо в большинстве случаев исследовать всю предысторию поведения.  [c.26]


Встречаются, однако, и такие элементы в некоторых конструкциях, о чем уже говорилось выше, которым разрешается терять устойчивость. Примером может служить обшивка в самолетных и судовых конструкциях. Однако и для таких элементов чаще всего из всей их закритической работы существенным является лишь то, какую по величине нагрузку они способны выдержать сразу же после потери устойчивости первоначальной  [c.307]

Плавная остановка механизмов грузоподъемных машин автоматически замыкающимися тормозами при работе с грузами различного веса (а в подъемных стреловых кранах — и при работе на различных вылетах) неосуществима, так как обслуживающий персонал не в состоянии воздействовать на процесс торможения. Регулирование процесса торможения оказывается возможным лишь при использовании управляемых тормозов, которые обеспечивают плавность и точность остановки, повышают производительность и улучшают условия работы элементов механизмов. В грузоподъемных машинах, в механизмах поворота стреловых и портальных кранов, в которых излишне резкое торможение может привести к потере устойчивости и к авариям, только управляемые тормоза могут обеспечить нормальную и безопасную эксплуатацию этих машин и механизмов. В современных конструкциях подъемных кранов, работающих с повышенными скоростями и снабжаемых подшипниками качения взамен подшипников скольжения, управляемые тормоза стали особенно необходимыми. Наибольшее применение они нашли в механизмах передвижения и поворота. В механизмах подъема, в которых тормозной момент нужен как для остановки, так и для удерживания груза в подвешенном состоянии, их применение ограничивается механизмами малой грузоподъемности и операциями регулирования скорости опускания груза.  [c.138]

Выбор конструкционного материала — не прихоть конструктора, не дань моде — это результат тщательного анализа прочностных, весовых, технологических и эксплуатационных характеристик материалов, имеющихся в распоряжении конструктора. Масса элементов конструкции, испытывающих в основном растягивающие нагрузки, обратно пропорциональна удельной прочности материала, из которого изготовлен элемент (т =5 ((7 в/р) Для элементов, нагруженных сжимаюЩ[ими нагрузками, допускаемыми в эксплуатации, являются напряжения потери устойчивости, т. е. состояние, при котором элемент резко изменяет свою форму, иногда без разрушения материала. Критические напряжения потери устойчивости элемента конструкции (например, стержня) зависят от характеристик жесткости материала, из которого элемент изготовлен, а не от характеристик прочности. Поэтому масса сжатого элемента прямо пропорциональна плотности материала и обратно пропорциональна удельной жесткости т Е/р) Масса слабонагруженных элементов практически не зависит от характеристик прочности материала и пропорциональна только его плотности (т р). Характеристики аэроупругости несущих поверхностей самолета — крыла, оперения в значительной степени определяются их жесткостью, которая может оцениваться, например, частотой собственных колебаний поверхностей (V). В первом приближении частота собственных колебаний крыла большого удлинения может быть оценена как частота колебаний балки  [c.346]

Методы подбора сечения стержня многообразны и представляют конструктору практически неограниченные возможности. Однако теоретическое описание потери устойчивости элемента в первом приближении обычно основывается на некоторых уцрощающих предположениях и результатах, приведенных в указанных выше работах. Дальнейшее уточнение на практике обычно достигается в результате численного решения основных уравнений или дискретизации конструкции согласно методу конечных элементов.  [c.122]

Наряду с этим для ряда элементов в процессе работы некоторых конструкций, например обшивки палуб, днища в корпусе судна, обшивки фюзелялса и крыльев самолета, предусматривается возможность потери местной устойчивости в упругой области работы материала, которая не является опасной ни для элемента, ни для конструкции в целом. Однако и в этом случае необходимо уметь оценивать значение усилия, вызывающего потерю устойчивости элементом, так как после потери им устойчивости при дальнейшем повышении уровня нагрузки, действующей на всю конструкцию, работоспособность элемента не исчерпывается и сохраняется примерно такой (элемент может воспринимать некоторое приращение приходящейся на него нагрузки), как и при потере им устойчивости.  [c.279]

П. т. используется для анализа напряжённо-деформированного состояния и времени работоспособности элементов конструкций, материал к-рых обладает свойствами ползучести и длит, прочности. Соотношения (1), (2) дополняют систему ур-ний равновесия и совместности до полной. В условиях ползучести при пост. внеш. воздействиях может со временем произойти потеря несущей способвостя отд. элементов конструкций и конструкции в целом. Это относится, в частности, к потере устойчивости элементов типа арок и оболочек, где возможна потеря устойчивости при нагрузках, существенно меньших, чем вызывающие мгновенную потерю устойчивости при нагружении. Важное значение имеют расчёты длит, прочности, когда возможно наступление мгновенного разрушения при длит, эксплуатации в условиях стационарного режима нагружения. П. т. позволяет найти оптиы. режимы ряда технол. процессов высокотемпературной обработки металлов, изготовления композитных материалов и оценить временные процессы при деформации грунтов, ледников и др. природных сред.  [c.10]

Местная устойчивость. Кроме общей потери устойчивости всего отсека может произойти местная потеря устойчивости элементов стенки отсека. Следует отметить, что выражения общая и местная здесь довольно условны, поскольку весь отсек является единой упругой си-стемой"и всякая его потеря устойчивости является, строго говоря, общей. Но эти выражения удобны, так как они хорошо отражают качественную сторону задачи при общей потере устойчивости отсек деформируется как ортотропная оболочка с образованием п окружных волн и одной полуволны в продольном направлении (см. 8.4), причем значение критического давления определяется интегральными жесткостями и стенки отсека местная потеря устойчивости связана с локальным деформированием элементов конструкции стенки отсека, и критическое давление определяется геометрическими и жест-костными характеристиками этих элементов.  [c.336]

Следует отметить, что приближенное моделирование динамической устойчивости элементов конструкций о учетом начальных несовершенств в детерминированной постановке ( 7.5) может быть реально осуществлено лишь в исключительных случаях. При этом необходим специальный отбор модельных образцов, имитирующих заданные начальные отклонения натурной конструкции. В общем случае исследование влияния начальных несовершенств путем мбханического моделирования должно производиться с учетом случайного характера динамической потери устойчивости ( 7.5).  [c.191]

Закономерности разрушения материала при длительном нагружении достаточно хорошо могут быть описаны с помощью разработанной физико-механической модели межзеренного разрушения, которая базируется на математическом описании процессов зарождения и роста пор, обусловленного как пластическим деформированием, так и диффузией вакансий, а также на введенном в гл. 2 при анализе внутризеренного вязкого разрушения понятии — потере микропластической устойчивости. Модель позволяет прогнозировать долговечность при статическом и циклическом длительном нагружениях элементов конструкций в условиях объемного напряженного состояния и переменной скорости деформирования. В частности, с помощью указанной модели могут быть описаны процессы залечивания межзе-ренных повреждений при сжатии и рассчитана долговечность в условиях циклического нагружения при различной скорости деформирования в полуциклах растяжения и сжатия.  [c.186]


Разрушение элементов конструкций происходит обычно в местах концентрации напряжений. Предшествующее разрушению нагружение, как правило, является сложным, а деформации — малыми. Сложные процессы нагружения возникают при потере устойчивости, а также в большинстве технологических задач по обработке металлов давлением и т. д. Вопрос о физической достоверности определяющих соотношений, описывающих процессы нагружения для большинства математических моделей в МДТТ, является малоизученным. Поэтому вопрос математического представления определяющих соотношений в МДТТ и возможность их прямой экспериментальной проверки является принципиальным. С этой точки зрения весьма эффективным является геометрическое представление процессов нагружения в специальных пятимерных пространствах напряжений и деформаций Ильюшина, которое и излагается в данной главе.  [c.85]

Анализ выпучивания и устойчивости идеальных упругих и неупругих систем не является общим при решении вопроса об устойчивости конструкций и их элементов, поскольку последние обладают различного рода несовершенствами. Неустойчивость реальных конструкций и их элементов с несовершенствами наступает в предельных точках или точках бифуркации Пуанкаре точно так же, как и для идеальных систем с устойчивым послебифуркационным поведением, В связи с этим все начальные несовершенства формы и приложения нагрузок принимаются за возмущающие факторы с наложенными на них ограничениями, и об устойчивости исходного процесса нагружения идеальной системы судят по пребыванию системы с возмущенной формой в окрестности основного процесса. Следовательно, на процесс выпучивания системы с начальными несовершенствами, так же как на послебифуркационный процесс выпучивания идеальной системы, следует смотреть как на возмущенный процесс, с помощью которого исследуются устойчивость конструкции, которую стремятся всегда создавать как совершенную. Этот докритический процесс завершается потерей устойчивости в предельной точке (точке бифуркации Пуанкаре) и послекритиче-ским выпучиванием.  [c.322]

Рассмотренная в задаче система является аналогом тонкостенной панели ВСОЕ (рис. 333), работающей в условиях сдвига. Такого рода элементы типичны для авиационных и ракетных конструкций. При потере устойчивости происходит диагональное образование волн, но панель, потеряв способность нести дополнительную сжимающую нагрузку по диагонали СЕ, успешно воспринимает растягивающие силы, действующие в перпендикулярном направлении.  [c.232]

Приведенных выше соотношениц достаточно лишь для предварительного анализа стержней, работающих на устойчивость. Тонкостенные элементы в виде труб и профилей, образованных из прямоугольных пластин, которые часто используют в ферменных конструкциях, разрушаются в результате местной потери устойчивости.. Задачи устойчивости тонких прямоугольных пластин имеют большое прикладное значение для широкого класса ферменных элементов, рассматриваемых как тонкие, нагруженные по краям пластины [50]. Устойчивость пластин подробно описана в работе Лехницкого [45], где рассмотрено большое число задач при различных условиях опирания. Формулы для определения критических усилий в различных пластинах и трехслойных сотовых панелях приведены в работе [77].  [c.123]

Пластины, работая в качестве несущих элементов многих конструкций, и в особенности в качестве обшивки летательных аппаратов, подвергаются воздействию различного рода нагрузок, вызывающих в них плоское напряженное состояние. Ортотроп-ным пластинам, как и изотропным, свойственно явление потери устойчивости, когда они нагружаются усилиями, вызывающими высокий уровень сжимающих в одном или в двух направлениях напряжений (распределенных равномерно или неравномерно), касательных напряжений или комбинированное напряженное состояние. При достаточно больших значениях коэффициентов жесткости А1, и как например, в случае параллельно- и  [c.183]

Современный самолет имеет конструкцию полумонококового типа, состоящую из тонкостенных листов или обечаек, подкрепленных балками (фермами) и стрингерами для предотвращения потери устойчивости. Внешняя обшивка или стенка образует аэродинамический контур агрегата — фюзеляжа, крыла, стабилизатора. Элементы жесткости крепятся к внутренней поверхности обшивки и воспринимают сосредоточенные нагрузки. Эта конструкция в течение многих лет служила основным объектом аэронавти-ческих исследований и существенно отличает аппараты от обычных строительных конструкций. История создания и сопутствующие вопросы анализа и расчета тонких оболочек описаны Гоффом [5], который отмечает, что фундаментальное выражение фон Кармана для определения разрушения пластины при продольном изгибе или потере устойчивости имеет вид  [c.40]

Абстрактные требования выполнения или невыполнения принципов нормальности ) и выпуклости, сформулированных в пространстве напряжений и деформаций (или нагрузок и перемещений), связаны с более привычными методами описания поведения материалов и конструкций. Основное внимание сосредоточено на обсуждении вопросов устойчивости и неустойчивости поведения материала и конструкции на микро- и макроуровнях. Показано, как устойчивое поведение конструкций или их элементов на макроуровне может скрывать протекание процесса разрущения на микроуровне (рост трещин и раскрытие ny TOi). Рассмотрена и противоположная ситуация, когда такие процессы, как потеря устойчивости волокна или слоя, неустойчивое разрущение на микро-уровне, изменение свойств в результате протекания химических реакций, неблагоприятно сказываются на поведении конструкции.  [c.10]

Картина существенно изменится в том случае, если та же оболочка выполняет не только функции резервуара, но включена в некоторую конструкцию как силовой элемент. Например, монпю представить себе, что цилиндрическая оболочка является несущим отсеком фюзеляжа скоростного самолета. В результате воздействия воздушного потока оболочка будет нагреваться. Поскольку возникают изгибающие моменты, то одновременно с температурным оболочка будет испытывать и силовое воздействие. Ясно, что в этом случае температурная потеря устойчивости может повлечь за собой серьезные последствия даже в том случае, если напряжения изгиба в фюзеляже, взятые отдельно от температурных, далеко не достигают критических.  [c.77]

Более того, возможны случаи, когда пренебрежение начальными перемещениями, связанными с изгибом системы в докрити-ческом состоянии, приводит к недопустимо большим погрешностям определения критической нагрузки. Например, если в задаче устойчивости сжатой в осевом направлении тонкой цилиндрической оболочки с малыми начальными неправильностями формы (см. гл. 6) не учитывать начальное напряженно-деформированное состояние, вызванное докритическим изгибом оболочки, то можно получить качественно неверный результат. Но тонкостенные элементы правильно спроектированных силовых конструкций в докритическом состоянии обычно работают без заметных изгибов. Изгиб таких элементов — это чаще всего результат потери устойчивости, вызывающий резкий рост напряжений и перемещений в конструкции и приводящий к частичной или полной потере ее работоспособности. Для расчета на устойчивость таких тонкостенных элементов допущение о пренебрежении изменением начальной геометрии вполне оправдано.  [c.38]

Приведенное выше решение описывает потерю устойчивости трехслойного стержня, связанную с общим искривлением его оси. Потерю устойчивости такого типа обычно называют общей потерей устойчивости. Но для трехслойных элементов конструкции, в том числе и для трехслойного стержня, возможна потеря устойчивости ( сморщивание ) несущих слоев потерю устойчивости такого типа обычно называют местной потерей устойчивости (рис. 3.24, а). Критические нагрузки, соответствующие местной потери устойчивости, практически не зависят от длины стержня и граничных условий на его торцах, а определяются изгибной жесткостью несущих слоев и жесткост-ными характеристиками и конструкцией заполнителя [19, 33].  [c.115]


Смотреть страницы где упоминается термин Потеря устойчивости элементов конструкций : [c.19]    [c.360]    [c.447]    [c.90]    [c.80]    [c.215]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.45 ]



ПОИСК



541, устойчивости 423 - Элементы

80 — Потеря устойчивост

Потери в конструкциях

Потеря устойчивости

Устойчивость конструкции

Устойчивость элементов конструкций

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте