Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Износостойкость при абразивном изнашивании металло

Износостойкость при абразивном изнашивании чистых металлов (рис. 11.5) пропорциональна их твердости е = 6-НВ (е — относительная износостойкость, определяемая в сравнении с образцом-эталоном Ь — коэффициент пропорциональности). В сплавах эта зависимость может не соблюдаться.  [c.334]

Рис. 74. Влияние твердости ЯУ металлов и сплавов на их относительную износостойкость при абразивном изнашивании Рис. 74. Влияние твердости ЯУ металлов и сплавов на их относительную износостойкость при абразивном изнашивании

В свою очередь, анализ сущности изнашивания при ударе с позиции металловедения и современных представлений о прочности металла дал основание полагать, что в условиях удара износостойкость чистых металлов, закаленных сталей, а также упрочняющих наплавок и покрытий не всегда однозначно связана с твердостью (как при абразивном изнашивании в условиях скольжения). Учитывая все многообразие и сложность возможных условий изнашивания при ударе, нельзя ожидать аналогии между закономерностями изнашивания при ударе и скольжении.  [c.5]

При абразивном изнашивании в условиях скольжения относительная износостойкость металлов и сплавов линейно связана с твердостью. Зависимость износостойкости материалов от твердости при различных давлениях на поверхности контакта не меняется.  [c.178]

Существует мнение, что начальной стадией разрушения металла при абразивном изнашивании является образование микротрещины, которая в процессе пластической деформации развивается в макротрещину с отделением микрообъема металла. Однако этого мнения не подтверждают другие исследователи, установившие независимость относительной износостойкости от числа дефектов, поскольку последние связаны с дислокационным механизмом.  [c.8]

Рис. 15. Зависимость относительной износостойкости е при абразивном изнашивании от твердости Н технически чистых металлов (трение о корундовое полотно твердость зерен 2290 кГ/жж2) Рис. 15. Зависимость относительной износостойкости е при <a href="/info/29709">абразивном изнашивании</a> от твердости Н технически <a href="/info/88173">чистых металлов</a> (трение о корундовое полотно твердость зерен 2290 кГ/жж2)
Следовательно, начальные остаточные напряжения не оказывают существенного влияния на износостойкость образцов при абразивном изнашивании, в то время как внешние напряжения, вызванные нагружением, оказывают существенное влияние на сопротивления металла изнашиванию.  [c.169]

Рис. 14. Зависимость относительной износостойкости металлов и сплавов от их твердости при абразивном изнашивании Рис. 14. Зависимость относительной износостойкости металлов и сплавов от их твердости при абразивном изнашивании

В. М. Г у т е р м а н, М. М. Т е н е н б а у м Влияние структуры на износостойкость углеродистых сталей при абразивном изнашивании. Металловедение и обработка металлов, 1956, 11, 15.  [c.201]

Для изучения влияния твердости на износостойкость при ударно-абразивном изнашивании были испытаны технически чистые металлы, отожженные стали, стали, подвергнутые закалке и отпуску при различных температурах. Испытание проводили при ударах по слою незакрепленного абразива на машине У-1-АС, в качестве которого применяли карбид кремния КЧ-63 (слой толщиной 1 мм).  [c.157]

В книге изложены методические вопросы исследования работоспособности машин и конструкций в условиях Севера. Дано обобщение методов представительной оценки хладостойкости и абразивного изнашивания деталей машин и сварных соединений при естественных низких температурах. Рассмотрено влияние различных факторов на хрупкое разрушение и износостойкость металлов и сплавов. Даются сведения о мероприятиях, направленных на повышение прочности, надежности и долговечности машин и конструкций в условиях низких температур.  [c.2]

В некоторых исследованиях изучалось изнашивание металлов об абразивную частично закрепленную массу, об абразивную прослойку, при ударно-абразивном воздействии. Было исследовано влияние структуры сплавов, температуры нагрева, агрессивной и нейтральной среды и т. д. Исследовался также механизм царапанья единичным твердым зерном. Исследовательские работы в области абразивного изнашивания были в СССР выполнены главным образом с целью выявления способов повышения износостойкости типовых деталей машин в разных отраслях машиностроения. В этих исследованиях условия трения создавались соответствующими условиями службы деталей определенного типа, поэтому абразивное изнашивание осуществлялось при наличии дополнительных влияний, специфических д я каждой типовой детали.  [c.49]

Наклеп поверхности повышает износостойкость при условии, если величина и степень наклепа подобраны с учетом внешних и внутренних условий изнашивания. Так, например, повышение механических свойств слоя путем наклепа может привести к увеличению износостойкости (увеличится сопротивление скалыванию) деталей машин. В случае же абразивного износа, без больших нагрузок и при отсутствии изменения структуры металла в процессе наклепа износостойкость не повышается.  [c.400]

Согласно исследованиям [12], износостойкость при использовании этого метода изменяется с изменением концентрации сплава не так, как при воздействии закрепленным зерном. В ряде случаев метод оказывается весьма чувствительным. Например, упрочнение при старении дюраля он обнаруживает, что не выявляется изнашиванием о жестко закрепленное зерно [13]. Основным фактором, определяющим мгновенную абразивную способность высокотвердого зерна [14], является острота режущих выступов зерна, характеризуемая величиной среднего радиуса закругления этих выступов [15]. Показано, что разрушительное действие зерна велико лишь в том случае, когда его твердость выше твердости разрушающего металла, причем дальнейшее повышение твердости зерна не эффективно.  [c.27]

Стали аустенитного класса на марганцовистой основе склонны к образованию трещин при нагревании и давлении, отличаются плохой свариваемостью, при медленном охлаждении и отпуске при 300—400 °С структура стали переходит в мартенсит. Однако эта сталь отличается высокой износостойкостью. Твердость металла на поверхностях трения в местах изнашивания повышается в процессе работы звеньев и поддерживается в пределах от 200 до 500 НВ при высокой пластичности, что близко к твердости закаленной стали 45, пластичность которой значительно ниже. Такое свойство аустенитной стали способствует повышению износостойкости в абразивной среде при ударных нагрузках.  [c.379]

В 1957 г. в сборнике Теоретические основы конструирования машин , посвященном 40-летию Советской власти, М. М. Хрущов дал обзор Развитие учения об износостойкости деталей машин , в котором последовательно изложил развитие работ в области износостойкости по отдельным, наиболее разработанным вопросам проблемы. Рассмотрены следующие основные вопросы развитие представлений о причинах и процессах изнашивания исследование влияния шероховатости обработанной поверхности деталей машин на износ металлов исследование абразивного изнашивания и изнашивания при схватывании методы испытания на изнашивание антифрикционные материалы и методы расчета деталей машин на износ.  [c.20]


Износостойкие стали содержат значительное количество — до 18— 24% (по объему) твердых карбидов М,Сз (HV 1500) и == 2Ск)0), что обеспечивает высокую износостойкость в условиях изнашивания как по металлу, так и, по абразивным материалам при нагреве не выше 300—400° С.  [c.158]

Обширные исследования по изучению изнашивания металлов и сплавов при их трении об абразивную поверхность проведены проф. М. М. Хрущовым и М. А. Бабичевым [7, сб. I], [1591— [162], [7, сб. IX]. Хотя данный метод испытания воспроизводит частный случай абразивного изнашивания, но при некоторых нормированных условиях результаты приобретают общее значение в смысле оценки износостойкости материалов.  [c.252]

Для выбора материалов, работающих в условиях абразивного изнашивания, можно руководствоваться данными, полученными проф. М. М. Хрущовым и М. А. Бабичевым [3] в результате многочисленных исследований. Они исследовали различные металлы и сплавы на износ при трении об абразивное полотно и определяли так называемую относительную износостойкость материала е — отношение износов испытываемого материала к эталонному, выбранному как материал, с которым сравниваются остальные. Исследования показали, что основной характеристикой абразивной износостойкости является твердость металлов и сталей.  [c.43]

Традиционные методы поверхностного упрочнения стали (цементация и азотирование) оказываются неприемлемыми для деталей, работающих в условиях ударно-абразивного изнашивания. Тонкие поверхностные упрочненные слои, обладающие высокой хрупкостью, интенсивно выкрашиваются под действцем ударных нагрузок. Причем трещины зарождаются не только на поверхности, но и на границе, отделяющей упрочненный слой от основного металла. Не выявлены преимущества твердых сплавов, хорошо зарекомендовавших себя при абразивном изнашивании. При определенных условиях нагружения их износостойкость оказалась ниже, чем у стали 45 [185].  [c.109]

Рис Ь Зависимости относигель-ной износостойкости е при абразивном изнашивании (испытания при трен ни о шлифовальную шкурку) от твердости д чистых металлов и сталей в отожженном состоянии б —термически обработанных сталей  [c.133]

Наиболее распространенными самофлюсующимися порошками являются сплавы на основе никеля, легированные бором и кремнием. Они отличаются высокими технологическими свойствами и низкой температурой плавления, что позволяет наплавлять стальные детали на воздухе. Покрытия стойки к воздействию агрессивных сред, повышенных температур, износоустойчивы при трении по металлу со смазкой и без нее, а также при абразивном изнашивании. По уровню износостойкости покрытия из самофлюсующихся сплавов в 3...5 раз превосходят закаленные инструментальные стали. По американской спецификации эти сплавы имеют торговое название Колмоной, а сплавы подобного типа в Японии называются Фукудалои.  [c.196]

Кроме указанных трех ведущих научных школ по триботехнике, в последнее время сформировались новые научные направления расчет деталей на износ —МВТУ им. Н. Э. Баумана (А. G. Про-ников) изнашивание и трение металлов в углеводородных жидкостях — Киевский институт инженеров гражданской авиации (А. А. Аксенов) контакт деталей и физика изнашивания — Калининский политехнический институт (Н. Б. Демкин) тепловая динамика трения — Институт машиноведения им. А. А. Благонравова АН СССР (А. В. Чичинадзе) абразивное изнашивание в условиях удара — Московский институт нефтехимической и газовой промышленности им. И. М. Губкина (В. Н. Виноградов) конструктивная износостойкость — ВИСХОМ (М. М. Тененбаум) износостойкость деталей узлов трения железнодорожного транспорта — Ростовский институт инженеров железнодорожного транспорта (Ю. А. Евдокимов) износостойкость деталей узлов трения машин пищевой промышленности — Киевский институт пищевой промышленности (Г. А. Прейс) физические процессы при абразивном изнашивании — Сибирский физико-технический институт им. В. Д. Кузнецова при Томском государственном университете (В. Н. Кащеев) технологические методы повышения износостойкости — Институт твердых сплавов АН УССР (Э. В. Рыжов) связь структуры металлов с износостойкостью — Институт машиноведения им. А. А. Благонравова АН СССР (Л. М. Рыбакова и Л. И. Куксенова) и др.  [c.26]

Часто для повышения износостойкости деталей применяют сплавы типа G — специальные легированные чугуны. Типичные составы наплавленного металла У30Х28С4Н4, У30Х20Р, У20Х15М и др. Наплавленный металл этого типа склонен к возникновению холодных трещин скорость охлаждения практически не влияет на температуру образования трещин. При абразивном изнашивании без ударных нагрузок для некоторых деталей можно использовать наплавленный слой с трещинами. Предварительный подогрев до 400—600° С и последующее медленное охлаждение в печи устраняют опасность появления холодных трещин, однако это приемлемо лишь для небольших деталей. Использование подслоя из низколегированной стали с малым пределом текучести способствует уменьшению числа холодных трещин в слое чугуна. Наплавку сплавов типа G следует вести с минимальным проплавлением электродом с поперечным колебанием или лентой.  [c.655]

Влияние содержания углерода в наплавленном металле при абразивном и ударно-абразивном изнашивании связано с характером разрушения изнашиваемой поверхности. При абразивном изнашивании скольжению или трению по абразиву основное значение имеет его сопротивление внедрению и перемещению внедренной абразивной частицы. Этот комплекс характеристик определяется сопротивлением металла упругим и пластическим деформациям (силовой показатель). Показательной характеристикой свойств при этом может быть твердость металла и твердость его отдельных фазовых составляющих. Хотя не всегда твердость может однозначно характеризовать стойкость наплавленного металла против абразивного изнашивания. Например, при одинаковой твердости металла в мартенситном и мартенситно-карбид-HONl состояниях износостойкость в последнем состоянии будет выше.  [c.317]


Таким образом, взаимосвязь между износостойкостью металлов в условиях абразивного изнашивания и их физико-механическими свойствами, полученная в статистических условиях, является пеодпозначпой. Исходя из приведённых данных, следует, что причиной нарушения или несоблюдения зависимости износостойкости от физико-механических свойств материала является невозможность воспроизведения при стандартных испытаниях всей сложности схемы напряжённого состояния поверхности металлов и сплавов, возникающей при абразивном изнашивании. Естественно, износостойкость представляет собой комплексную характеристику, зависящую не только от набора физико-механических свойств снлава (твёрдости, прочности, степени искажения решётки и т.д.), но и от его химического состава, структуры, свойств составляющих абразивной среды и внешних условий трения.  [c.42]

Ударно-усталостное изнашивание стали характерно для условий соударения двух металлических поверхностей при отсутствии в зоне контакта твердых абразивных частиц. Эти условия наиболее типичны для работы штампо-вого инструмента при холодной деформации металла [43, 53, 57, 64], поэтому представляет интерес изучение износостойкости штамповых сталей в условиях ударноусталостного изнашивания (табл. 6).  [c.101]

М. Е. Гарбер считает, что в белых чугунах количество остаточного аустенита должно быть минимально, так как присутствие устойчивого аустенита всегда снижает сопротивление изнашиванию [22]. Для получения максимальной износостойкости следует стремиться к получению белых чугунов с мартенситной основой, однако следует иметь в виду, что последняя содержит значительное количество остаточного аустенита. В условиях абразивного изнашивания при значительных ударных нагрузках и повторяющихся высоких напряжениях, испытываемых одним и тем же объемом изнашиваемого металла, лучшей может быть аустенитная металлическая основа.  [c.33]

Если построить ряды ИЗНОСОСТОЙК01СТИ металлов при трении и ударе об абразивную поверхность в исследованном диапазоне температур (см.табл.25), то МОЖНО отметить, что мягкие металлы сохраняют этот порядок при обоих режимах испытаний. С повышением твердости металлов он нарушается (см. рис. 55), что объясняется различной микротвер-достыо у одних и тех же металлов. Магний и кобальт (а при ударе и молибден) значительно отклоняются от общей тенденции. Отсутствие прямо пропорциональной зависимости е — Я указывает на то, что твердость не является определяющим фактором при изнашивании металлов. Отсюда следует, что чем выше твердость металла, тем доля ее влияния на износостойкость меньше.  [c.144]

В. А. Ульяновым [220] проведена экспериментальная работа но поверхностному легированию высокопрочного чугуна с целью создания легированного слоя высокой износостойкости на основе карбидов хрома. Легирующая паста состояла из порошков феррохроА1а 507о по весу, ферромарганца 40% но весу, чугуна (С — 3,5%, Si — 2,5%) 10% по весу и жидкого стекла в количестве 15% от веса порошков. Этой пастой покрывались стержни, после чего они просушивались. Формовка и сборка осуществлялись обычным путем. Заливка деталей производилась высокопрочным чугуном при температуре металла около 1380 "С. Твердость легированного слоя составляла HRA 80, микротвердость структурных составляющих карбидов—1500 HV, эвтектики — 500—600 HV. Отливки подвергались испытанию на абразивное изнашивание в паре со сталью 45 твердостью HR 50 и показали значительное увеличение износостойкости по сравнению со сталью Г13Л, принятой за эталон. Износостойкость легированного слоя повысилась в 4 раза, стали 45 — в 5 раз.,  [c.97]

При скольжении металла по металлу с абразивной прослойкой износостойкость определяется твердостью и структурой металла, а также правильным выбором соотношения твердости трущихся поверхностей (рис. 58). Для исследования износостойкости стали в зависимости от свойств и величины зерна абразива была взята пара втулка — палец с абразивиой прослойкой между ними. Палец и втулку изготовляли из Д1ало-углеродистой стали с цементацией на глубину 3,0—3,5 мм и термической обработкой иа заданную твердость. При одинаковой твердости втулки и пальца износ пальца оказался в 2—3 раза больше износа втулки. При опыте с мягкой втулкой и твердым пальцем износ нальца изменялся незначительно, а износ втулки уменьшался более чем в 20 раз. Следовательно, во всех случаях абразивного изнашивания износостойкость определяется твердостью металла, абразива и соотношением между твердостями трущихся поверхностей металла.  [c.213]

Химико-термическая обработка деталей применяется в промышленности в большинстве случаев с целью повышения свойств поверхностной твердости, износостойкости, эрозиостойкосгн, задиростойкости, контактной выносливости и из-гибной усталостной прочности (процессы — цементация, азотирование, нитроцементация и др.). Для резкого повышения сопротивления абразивному изнашиванию перспективны процессы — борирование, диффузионное хромирование и другие, позволяющие получить в поверхностном слое бориды железа, карбиды хрома или другие, химические соединения металлов, отличающиеся высокой твердостью. В других случаях цель.ю химико-термической обработки является защита поверхности деталей от коррозии при комнатной и повышенной температурах в различных агрессивных средах или окалииообразования (процессы — алитирование, силицирование, хромирование и др.).  [c.96]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]


Твердые сплавы. Высокими твердостью и износостойкостью обладают композиционные материалы — твердые сплавы (ГОСТ 3882-74 ГОСТ 26530-85), состоящие из частиц тугоплавких соединений (главным образом карбидов) переходных металлов и связки (чаще всего кобальтовой) [83, 95, 101]. Сведения о составе и свойствах твердых сплавов приведеныв гл.УП1,об износостойкости при различных видах абразивного изнашивания — в табл. 11—13.  [c.144]

Авторами работ [83, 92] предложена и развивается теория усталостного изнашивания, в рамках которой проводится аналогия между процессами разрушения поверхностей при трении и усталостью материалов. Разрушение при абразивном изна-пшвании может рассматриваться как предельный случай, когда число циклов нагружений до разрушения равно единице. Особенности микроструктуры материалов в условиях абразивного изнашивания менее существенны, что позволило М. М. Хрущову сформулировать известное соотношение о пропорциональности износостойкости и твердости. Однако более поздние исследования [182] показали, что даже в условиях абразивного изнашивания важно, каким образом достигнут заданный уровень твердости материала (рис. 1.3). Лишь в случаях чистых отожженных металлов и хрупких материалов типа керамик реализуется пропорциональность между твердостью и износостойкостью.  [c.8]

Так как износостойкость гильз цилиндров и поршневых колец обусловливается прежде всего протекающими на поверностях трения химическими процессами и механическим взаимодействием этих поверхностей в присутствии абразивов, то для повышения ресурса деталей целесообразно уже при изготовлении придать такую структуру металлу, которая наиболее эффективно противостояла бы коррозионному и абразивному изнашиванию.  [c.137]

Стойкость абразивному изнашиванию зависит также от состава и структуры поверхностных слоев металлов. Оптимальная износостойкость структуры достигается при высоком сопротивлении материала сжатию, сдвигу, значительной силе молекулярно-механичес-кого сцепления структурных составляющих, сочетанию твердости и вязкости при отсутствии хрупкости высокой теплопроводности при небольщом различии температурных коэффициентов расщирения фаз, высокой насыщенности и равномерности микрораспределения легирующих элементов, устойчивости против коррозии.  [c.155]

Для исключения влияния колебаний абразивной способности разных листов шкурки производят испытание эталонного материала. Лист абразивной шкурки исполь чу-ют для однократного испытания. В результате испытания определяют относительную износостойкость (отностительно эталонного материала) разных металлов при абразивном виде изнашивания.  [c.45]

После высокого отпуска закаленных сталей структурное состояние их характеризуется ферритной матрицей с карбидами. Повышение содержания углерйда в стали в этом случае является показателем увеличения количества карбидной фазы. Износостойкость ферритной матрицы существенно ниже, чем мартенситной, особенно при ударно-абразивном изнашивании, где большое значение имеет сопротивление материала ударному внедрению в металл абразива (см. рис. 12.1). Увеличение количества карбидов более эффективно влияет на износостойкость при трении по абразиву и менее эффективно при ударно-абразивном изнашивании.  [c.316]


Смотреть страницы где упоминается термин Износостойкость при абразивном изнашивании металло : [c.13]    [c.22]    [c.44]    [c.655]    [c.46]    [c.264]    [c.214]    [c.164]    [c.281]    [c.87]    [c.360]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.46 ]



ПОИСК



Абразивность

Изн абразивное

Изнашивание

Изнашивание абразивное

Изнашивание металлов

Износостойкость

Износостойкость абразивная

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте