Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование износостойких сталей

ИССЛЕДОВАНИЕ ИЗНОСОСТОЙКОСТИ СТАЛИ ПРИ УДАРНО-АБРАЗИВНОМ ИЗНАШИВАНИИ  [c.157]

Результаты исследования износостойкости стали в зависимости от изменения ее механических свойств показывают, что при ударно-абразивном изнашивании ни одна из рассмотренных механических характеристик не влияет на износостойкость однозначно в хрупкой и вязкой обла стях разрушения. Следовательно, необходимо выявить такую механическую характеристику стали, которая имела бы прямую корреляционную связь с износостойкостью независимо от характера разрушения.  [c.174]


ИССЛЕДОВАНИЕ ИЗНОСОСТОЙКИХ СТАЛЕЙ  [c.102]

Лазаренко В. К., Исследование износостойкости сталей, кандидатская диссертация, 1959.  [c.190]

ИССЛЕДОВАНИЕ ИЗНОСОСТОЙКОСТИ СТАЛЕЙ ПРИМЕНИТЕЛЬНО К ГУСЕНИЧНЫМ МЕХАНИЗМАМ С ОТКРЫТЫМИ ШАРНИРАМИ  [c.267]

ИССЛЕДОВАНИЕ ИЗНОСОСТОЙКОСТИ СТАЛЕЙ,  [c.53]

Мы предприняли попытку оцепить имеющиеся в литературе результаты исследования износостойкости сталей и сплавов, проведенные разными авторами, и сопоставить с нашими данными, полученными при поиске материалов, обладающих высокой способностью к сопротивлению разрушающему воздействию изнашивающих сред. Анализ большого числа публикаций но вопросам износостойкости подвигнул пас к необходимости разработать такие подходы, которые обеспечили бы наиболее полный учет всех взаимосвязанных факторов, влияющих одновременно на результат изнашивания изнашивающая среда - материал детали -внешние условия изнашивания.  [c.1]

При проведении методических исследований было установлено, что износостойкость сталей, работающих  [c.64]

ИССЛЕДОВАНИЕ ИЗНОСОСТОЙКОСТИ ШТАМПОВЫХ СТАЛЕЙ  [c.101]

Увеличение содержания углерода в заэвтектоидных сталях снижает ее износостойкость в результате хрупкого выкрашивания, а уменьшение — снижает износостойкость вследствие значительной пластической деформации поверхности изнашивания. Наиболее существенно изменение содержания углерода в закаленной стали влияет на ее износостойкость при высоких значениях энергии удара. При небольших энергиях удара этот эффект можно вообще не обнаружить. Так, при испытании различных закаленных углеродистых сталей на машине УАМ не удалось обнаружить снижения износостойкости заэвтектоидных сталей. В этих опытах с увеличением содержания углерода наблюдалось непрерывное повышение износостойкости закаленных сталей. Такое несоответствие следует объяснить различными условиями испытаний. Например, при исследованиях, проведенных на машине У-1-АЛ, использовали образец диаметром 10 мм, т. е. с площадью в 25 раз большей, чем при испытаниях на машине УАМ. Общая энергия удара больше в 1250 раз, а энергия удара, приходящегося на единицу поверхности износа, — в 50 раз выше. Несоответствие результатов исследования износостойкости различных углеродистых сталей, полученных на машинах У-1-АЛ и УАМ, еще раз подчеркивает существенное вли-  [c.166]

Механизм ударно-абразивного изнашивания существенно различен в вязкой и хрупкой областях разрушения. Поэтому представляет интерес исследование зависимостей износостойкости наплавочных сплавов от их механических свойств раздельно для каждой из этих областей разрушения. Испытание всех наплавок, за исключением двух, независимо от уровня их легирования, показало более низкую износостойкость по сравнению с износостойкостью стали 45 в состоянии после закалки и низкого отпуска. Установлено, что твердость сплавов неоднозначно влияет на их износ при динамическом воздействии абразива. С увеличением твердости до Я1/ю=4500 МПа износ сплавов уменьшается, отрыв частиц при этом происходит в результате многократной пластической деформации (вязкая область разрушения). С увеличением твердости наряду с отрывом частиц происходит хрупкое выкрашивание, износ при этом увеличивается (хрупкая область разрушения).  [c.171]


Износостойкость сталей зависит от вероятности изменения многих факторов и прежде всего от колебаний их химического состава. Сталь 45 распространена при изготовлении деталей машин и рекомендована (в отожженном состоянии) в качестве эталонного материала при любых испытаниях на изнашивание [144]. Поэтому статистическое изучение ее свойств одновременно с износостойкостью представляет практический интерес. Отдельные статистические исследования свойств этой стали уже имеются [145].  [c.152]

По разработанной методике исследовались еще многие марки и типы сталей [146—148]. В большинстве случаев установлено ухудшающее влияние низкой температуры на абразивную износостойкость этих м,атериалов при двух схемах взаимодействия металлов с абразивной поверхностью (трение и удар). Значительный интерес представляют другие схемы взаимодействия материала с абразивом. Поэтому были проведены испытания на изнашивание стали 45 в крупнокусковой и мелкодисперсной абразивной массе. В первом случае в качестве абразива использовался гравий, а во втором— карбид кремния. Испытания в крупнокусковой абразивной массе проводились на установке ЧП-1 барабанного типа [149, 150], а в мелкодисперсной —на установке, схема которой предложена Н. М. Серпиком [151]. Методика выполнения этих исследований подробно изложена в работах [149—151], а основные результаты сравнительной износостойкости стали 45 при разных схемах изнашивания приведены на рис. 61. Испытания показали, что схема взаимодействия материала с абразивом — один из главных факторов,  [c.157]

Итак, отмечено ухудшающее влияние низкой температуры на износостойкость сталей при всех режимах испытаний. Характер такого изменения практически одинаков для исследованных схем взаимодействия системы абразив — сталь, хотя количественное выражение износостойкости для каждого режима испытаний различно. Установленные зависимости износостойкость — температура позволяют предположить, что при каждом режиме испытаний изнашивание поверхностного слоя зависит от изменения отдельных свойств сталей при понижении температуры. Но, поскольку степень изменения разных свойств сталей различна, естественно.  [c.161]

Проведенные исследования [170] показали, что добавка меди в сталь не оказывает существенного влияния на износостойкость стали при сухом трении. Термообработка этих сталей также не дала положительных результатов. Добавление вольфрама (4,3%) привело к повышению фрикционных свойств стали после термообработки значения коэффициента трения и износоустойчивость  [c.575]

Первое в СССР значительное по масштабу исследование сопротивления сталей абразивному изнашиванию было проведено в начале 30-х годов на лабораторной машине Зайцева по схеме трения образцов о наждачную шкурку, закрепленную на плоской стороне вращающегося диска. Позднее в серии исследований [258] была выявлена зависимость износостойкости от внешних условий, свойств материалов, твердости абразивных частиц, их размера и других факторов.  [c.49]

Результаты исследований износостойкости стали Д7ХФНШ при ударе по абразиву полностью подтвердились при испытании стали 45. И в этом случае с повышением механических характеристик стали в вязкой области прослеживается та же тенденция в изменении износостойкости. С повышением твердости в вязкой области износостойкость стали 45 увеличивается, а с увеличением йн, б и il снижается.  [c.163]

Сравнение результатов экспериментальных исследований износостойкости стали Д7ХФНШ при трении и ударе по абразиву позволяет сформулировать основные принципиальные особенности ударно-абразивного изнашивания.  [c.163]

При скольжении металла по металлу с абразивной прослойкой износостойкость определяется твердостью и структурой металла, а также правильным выбором соотношения твердости трущихся поверхностей (рис. 58). Для исследования износостойкости стали в зависимости от свойств и величины зерна абразива была взята пара втулка — палец с абразивиой прослойкой между ними. Палец и втулку изготовляли из Д1ало-углеродистой стали с цементацией на глубину 3,0—3,5 мм и термической обработкой иа заданную твердость. При одинаковой твердости втулки и пальца износ пальца оказался в 2—3 раза больше износа втулки. При опыте с мягкой втулкой и твердым пальцем износ нальца изменялся незначительно, а износ втулки уменьшался более чем в 20 раз. Следовательно, во всех случаях абразивного изнашивания износостойкость определяется твердостью металла, абразива и соотношением между твердостями трущихся поверхностей металла.  [c.213]


Исследованиями износостойкости стали Х32Н8 при трении по фторопласту-4 на машине трения МИ-1М получены невысокий износ фторопласта-4 со смазкой водой (0,01 г/ч) и практическое отсутствие износа стали при давлении до 49 кгс/см с коэффициентом трения 0,013.  [c.211]

Исследования, проведенные в морской и пресной воде, показали аналогичные результаты. Износостойкость образцов при абразивном изнап1ивании в морской и пресной воде оказалась практически одинаковой. При этом содержание водорода в поверхностном слое стали в процессе трения в воде увеличивается в обоих случаях в 3 раза. С увеличением давления степень влияния среды в результате на-водороживания уменьшается, и определяющим фактором износостойкости стали при абразивном изнашивании становится твердость.  [c.126]

Преимущества искусственного абразивного монолита позволили получить некоторые закономерности, а также отработать методику лабораторных испытаний. Эти исследования значительно труднее было бы провести при использовании естественкого монолитного абразива. Однако, чтобы убедиться в достоверности полученных закономерностей при разработке практических рекомендаций повыш-ения износостойкости породоразрушающего инструмента, необходимо было проверить эти закономерности в условиях удара по естественным горным породам. Для испытаний были взяты породы, аналогичные тем, что использовали Л. А. Шрейбер и А. И. Спивак при исследовании изнашивания стали в процессе скольжения по горным породам (табл. 3).  [c.89]

Изучение связи механических свойств и износостойкости сталей,проводили при испытании на ударно-усталостное изнашивание стали Д7ХФНША. Образцы подвергали закалке и отпуску при температурах от 100 до 500° С. Таким образом достигалось изменение механических свойств стали в широком интервале основных показателей. Изучали влияние прочностных показателей и предела выносливости на износостойкость стали Д7ХФНШ в условиях ударно-усталостного изнашивания. Энергия единичного удара при испытаниях состав-, ляла 5 Дж. В результате исследований удалось выявить роль механических свойств в обш,ем механизме удар-но-усталостпого изнашивания [45, 50].  [c.106]

Механизм ударно-абразивного изнашивания существенно различен в вязкой и хрупкой областях разрушения. На рис. 77 приведены результаты исследований зависимости износостойкости стали Д7ХФНШ от ее твердости в каждой из этих областей разрушения. Разделение характера разрушения стали на хрупкое и вязкое производили по ориентации площадки излома относительно оси цилиндрического образца диаметром 10 мм с надрезом. Образцы разрушались при центральном изгибе. При нормальном расположении площадки излома к оси образца происходит отрыв — хрупкое разрушение, а при наклонном срезе — вязкое разрушение. Для стали Д7ХФНШ граница перехода хрупкого разрушения и вязкое соответствует максимальным значениям хрупкой и вязкой прочности, наблюдаемым при-определенных температурах отпуска.  [c.159]

Исследования высокоуглеродистых сталей, проведенные автором, позволили установить, что дополнительное легирование их хромом до 10,8% способствует сохранению при литом состоянии значительного коэффициента относительной износостойкости (Е= = 5,17) и достаточно высокой твердости HV 5,06 кН/мм , что объясняется получением аустенито-мартенситной структуры с высокой микротвердостьго аустенита (6,71 кН/мм ). Повышение содержания хрома до 17,8% при некотором увеличении количества углерода (2,0%) приводило к снижению твердости стали до HV 4,25 кН/мм и износостойкости на 9%. Это связано с увеличением количества аустенита и уменьшением его микротвердости до 4,35 кН/мм ,  [c.31]

Полученные результаты (табл. 29) свидетельствуют о том, что стали заметно снижают свою 1износостойкость во воем исследованном диапазоне температур при обоих режимах испытаний. В большинстве случаев износостойкость углеродистых сталей при трении существенно выше, чем при ударе об абразивную поверхность. Это указывает на зависимость износостойкости сталей от схемы их взаимодействия с абразивом.  [c.150]

Для исследования колебаний химического состава, твердости, ударной вязкости и относительной износостойкости стали 45 были взяты образцы из 40 плавок Кузнецкого металлургического завода. Образцы из каждой плавки подвергались двум стандартным режимам термической обработки нормализации и термоулучшению. Для каждого вида термообработки проводились самостоятельные исследования. Статистическая обработка результатов испытаний сводилась к построению кривых нормального распределения и расчету их параметров. Критерием оценки соответствия полученных результатов закону нормального распределения выбран критерий Пирсона Р у ) [6].  [c.152]

Абразивная износостойкость стали 45 определялась по результатам испытаний 5 образцов каждой плавки, что предусмотрено методикой исследований. При этом как для нормализованной, так и для термоулучшенной стали испытания проводились при температурах +20, —30 и —65°С на двух режимах при трении и при ударе об абразивную шкурку. Кривые распределения относительной износостойкости для двух видов термообработки при трении и при ударе об абразивную шкурку строились для всех температур испытаний. Все они хорошо согласуются с законом нормального распределения. Это указывает на достаточно досто-  [c.155]

Этот способ удобен своей простотой (можно использовать настольный сверлильный станок), но имеет недостаток в продолжение опыта на образец воздействуют одни и те же частицы абразива. Способ гильзы использовался также в исследовании износостойкости среднеуглеродистой стали Д. М. Хайтом [229].  [c.40]

Способ крыльчатки применен И. П. Земляковым [75] для сравнительного изнашивания образцов, изготовленных из различных материалов (стали, латуии, капрона, текстолита) В. С. Ломакин и В. И. Савченко [131] применили установку типа крыльчатки для исследования износостойкости эмалевых покрытий при изнашивании абразивными частицами, взвешенными в жидкой агрессивной среде.  [c.40]


А. А. Великанова [24] при разработке методики испытания материала почворежущих лезвий на изнашивание испытывала стали марок 65Г и У8 с различной термической обработкой. В результате испытаний подтверждается прямо пропорциональная зависимость износостойкости от твердости. Сталь 65Г, закаленная с последующим отпуском при 200 °С, имеет относительную износостойкость в 2,39 раза, а сталь У8 закаленная, — в 3,82 раза большую, чем сталь 65Г в отожженном состоянии. Таким образом, износостойкость стали У8 в закаленном состоянии Б 1,5 раза больше, чем у стали 65Г при закалке с последующим отпуском при 200 °С. Влияние содержания марганил на износостойкость при абразивном изнашивании исследовалось также Ю. А. Шульте и др. [261] на специальных установ ках, моделирующих изнашивание проушин траков гусениц. Как показали исследования, наивыгоднейшими пределами содержания марганца в стали для траков являются 9—11%, что соответствует марке ГШЛ, химический состав которой должен быть следующим С 0,9—1,3% Мп 9-11% Мп/С > 8,0  [c.71]

На фиг. 66 видно, что износостойкость стали У10, прошедшей изотермическую обработку, при твердости НВ 300 вдвое больше износостойкости лемешной стали Л53 той же твердости. По графику (фиг. 67) износостойкость стали 65Г2, прошедшей изотермическую обработку, гораздо выше, чем у стали 65Г2 и лемешной Л53, прошедших объемную закалку с последующим отпуском. Из всех исследованных сталей максимальной износостойкостью обладает сталь У12 после изотермической обра- ботки (фиг. 68), обеспечивающей получение игольчатого троо-  [c.73]

Напыление одного металла на изнашиваемую aбpaзнвo поверхность другого, с целью повышения износостойкости, не дает положительного результата. При исследовании [161] элек-трометаллизациоиного покрытия, нанесенного из стали У7 при изнашивании об абразивную шкурку, получен посредственньи г ])езультат. Износостойкость покрытия из стали У7 вдвое меньше износостойкости стали 45, закаленной до твердости HR 45. lio изнашивание происходит не за счет отделения напыленных частиц, а за счет изнашивания самих этих частиц.  [c.96]

Проведенные исследования износостойкости бронз в паре со сталью в среде глицерина показывают, что в зависимости от условий испытания износ бронзы может быть большим и ничтожно малым. В том случае, если поверхность трения бронзы при установившемся режиме покрывается тонким слоем меди, дальнейшее анодное растворение прекращается, происходит пассивация, что приводит к резкому уменьшению износа. Если же бронза содержит много легирующих элементов, легко растворимых в глицерине (например, бронза БрАЖМц), и условия работы тяжелые (высокие удельные нагрузки), то процесс растворения идет интенсивно, выделившаяся медь хотя и схватывается со сталью, но из-за атомарного состава твердых растворов образует аморфный рыхлый слой, который не успевает кристаллизоваться. Износостойкость бронзы при таких условиях мала. С уменьшением удельного давления скорость растворения падает, на бронзе образуется пассивирующая пленка, что снижает интенсивность износа. В таких условиях применение бронзы БрАЖМц дает хорошие результаты по повышению долговечности узлов.  [c.105]


Смотреть страницы где упоминается термин Исследование износостойких сталей : [c.65]    [c.48]    [c.71]    [c.72]    [c.108]    [c.115]    [c.192]    [c.113]    [c.201]    [c.199]    [c.128]    [c.105]   
Смотреть главы в:

Износостойкие сплавы и покрытия  -> Исследование износостойких сталей



ПОИСК



Износостойкая сталь

Износостойкость

Исследование износостойкости сталей, бронз и высокопрочного чугуна

Исследование износостойкости штамповых сталей

Кибиткин, Е. В. Лялин, В. Д. Яхнина. Исследование износостойкости при высоких температурах азотированных, цементированных и нигроцементированных сталей

Сравнительные исследования сопротивления смятию и износостойкости мартенситных, аустенитных штамповых сталей и жаропрочных сплавов

Сталь Износостойкость

Ч износостойкий

Чернышев. Исследование износостойкости сталей применительно к гусеничным механизмам с открытыми шарнирами



© 2025 Mash-xxl.info Реклама на сайте