Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физическая случайная

Усеченное нормальное распределение (рис. 30). Так как часто физические случайные величины меняются в ограниченных пределах от Xi до Х2, то часто для их описания используют усеченное нормальное распределение. Плотность распределения и функция распределения которого имеют вид [38]  [c.108]

Для многих реальных физических случайных процессов нормированная корреляционная функция (примерный вид этой функции показан на рис. 1.5) может быть аппроксимирована формулой  [c.16]


Для других сред (морская вода или химическая среда на заводах) условия экспозиции должны наиболее точно дублировать условия реальной службы, и продолжительность испытаний для получения воспроизводимых результатов должна соответствовать времени работы реальных деталей. Действие удара в потоке жидкости, термические эффекты и физические случайные повреждения пленки также должны быть учтены при испытаниях покрытий.  [c.595]

С физической точки зрения данная процедура означает, что вместо ОДНОГО произвольного случайного нагружения рассматривают сумму нормальных нагружений с разными параметрами w .., D -, существующих с вероятностями  [c.48]

Случайные погрешности — это погрешности, величину и направление которых заранее нельзя предусмотреть. Их появление обусловлено воздействием большого числа случайных факторов, действующих независимо друг от друга, но примерно в одинаковой мере. К причинам, вызывающим случайные погрешности, относятся нестабильность химических, физических и механических свойств материалов, непостоянство размеров заготовок, изменение сил резания, некоторые погрешности процесса измерения и др.  [c.32]

Случайные отклонения различных физических величин от их средних или равновесных значений называются флюктуациями.  [c.130]

Известно, что определенные экспериментально механические характеристики, в равной степени, как и принимаемые для расчета нагрузки, в большинстве случаев отличаются от фактически существующих. При этом многие факторы, оказывающие влияние на действительную прочность, не поддаются непосредственному предварительному учету, так как носят случайный характер и прогнозировать их трудно. Часть факторов не может быть учтена из-за отсутствия исчерпывающих данных о физической сущности происходящих явлений. Наконец, учет некоторых факторов может привести к такому усложнению расчетной схемы, что выполнение самого расчета повлечет неоправданные затраты труда и времени.  [c.139]

В физике представление о случайности возникает при анализе вопроса о том, насколько полно будущее состояние системы определяется ее прошлым. Нетрудно указать много простых физических  [c.21]

СЛУЧАЙНЫЙ ПРОЦЕСС - термин для обозначения реального физического процесса,представляемого в виде ансамбля реализаций. Реально существуют физические процессы. которые можно описать той или иной вероятностной моделью -случайным процессом определенного типа.  [c.70]

Размерность кластера D не зависит ни от формы кластера, ни от типа упаковки частиц (мономеров). Она лишь служит количественной характеристикой того, как кластер заполняет занимаемое им пространство [7]. Из соотношения (2.10) следует, что фрактальная система обладает свойством самоподобия. Оно формулируется следующим образом если в окрестности точки, занятой кластером, выделить область относительно небольшого объема, то попадающие в него участки кластера будут подобны в физическом смысле. Таким образом, фрактальный кластер, построенный по случайному закону, имеет внутренний порядок, а свойство самоподобия следует понимать статистически.  [c.85]


Читатель должен заметить, что мы не дали здесь детальной и логически цельной динамической теории образования галактик, происходящего как следствие сжатия однородного газа. Мы только построили оценочную гипотезу, которая позволила получить для массы одной галактики и расстояния между галактиками числовые значения, не противоречащие данным астрофизических наблюдений. Это соответствие порядка величин может означать одно из двух или физическое обоснование сделанных оценок в основном правильно, или мы являемся жертвами случайного совпадения. Мы не предложили никакого объяснения причин однородного распределения газа. Кроме того, приведенные нами доводы могут оказаться несостоятельными, если справедлива гипотеза  [c.307]

Уравнение (123,1) формально совпадает с двухмерным волновым уравнением, причем x/v играет роль времени, а v / — роль скорости распространения волн. Это обстоятельство не случайно и имеет глубокий физический смысл, так как движение газа вдали от тела представляет собой, как уже указано, именно излучаемые телом расходящиеся звуковые волны. Если представить себе газ на бесконечности покоящимся, а тело движущимся, то площадь поперечного сечения тела в заданном месте пространства будет меняться со временем, причем расстояние, до которого к моменту t распространятся возмущения (т. е. расстояние до конуса Маха), будет расти как таким образом, мы будем иметь дело с двухмерным излучением звука (распространяющегося со скоростью t>i/P) пульсирующим контуром.  [c.643]

Из обсуждения процесса испускания волн атомами источника света (см. 14, 21) должно быть ясно, что причиной нарушения когерентности служат случайные (статистические) изменения амплитуды и фазы волны, вызванные, в свою очередь, случайными воздействиями окружающей среды на излучающие атомы. Поэтому анализ интерференции частично когерентных световых пучков требует учета статистических свойств волн, испускаемых атомами. В данном курсе нет возможности останавливаться на этой стороне вопроса сколько-нибудь подробно ), однако ряд важных физических выводов можно получить, опираясь на сравнительно простые, но обш,ие статистические соображения.  [c.94]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Переход к каждому последующему этапу характеризуется уточнением, а следовательно, и усложнением моделей и углублением задач анализа. Соответственно возрастает объем проектной документации и трудоемкость ее получения. Пример, показывающий процесс развития модели ЭМУ от этапа к этапу проектирования, приведен на рис. 1.4. Если на первых шагах применяется небольшое число обобщенных параметров (как правило, не более 10—12) и упрощенные модели для предварительной оценки основных рабочих показателей, то в дальнейшем число параметров увеличивается в 10—15 раз, кроме того, вступают в действие математические модели, учитывающие взаимодействие физических процессов (электромагнитных, тепловых, деформационных), а также явления случайного разброса параметров объекта. В, итоге описание проектируемого объекта, в начале представленное перечнем требований ТЗ (не более 3-5 страниц), многократно увеличивается и составляет несколько десятков чертежей, сотни страниц технологических карт и пр.  [c.18]


Математические модели в приращениях 127 тепловых процессов 118 упругих деформаций 118 электромеханического преобразования энергии 101 Машинная графика 31 Модели объекта проектирования абстрактные 14 физические 14 Моделирование испытаний 259 случайных чисел 255  [c.294]

Идеи Больцмана намного опережали свое время. Сведение статистических закономерностей к динамическим предопределяло бы повторяемость, неизменность одних и тех же видов движения, форм жизни. Случайности же, допускаемые природой, означают развитие, эволюцию. Больцман не случайно называл XIX век веком Дарвина. В биологии законы случая являются основными, наследственная изменчивость (случайные отклонения характеристик организма от наиболее часто встречающихся, средних) не затухает, если наследуемые признаки обеспечивают организму лучшие условия существования и размножения. Физическая система также эволюционирует в сторону максимума энтропии.  [c.87]

Как с этой точки зрения следует толковать опыт Майкельсона в какой-либо инерциальной, но не неподвижной системе отсчета Прежде всего, так как такой опыт не был произведен, то нужно высказать какое-то предположение о том, какой результат дал бы этот опыт, если бы он был произведен. Выделяя неподвижную систему отсчета из всех инерциальных систем, Лорентц наделил ее тем особым свойством, которое должно дать возможность обнаружить при помощи физических опытов прямолинейное и равномерное движение относительно этой неподвижной системы отсчета. Однако опыт Майкельсона, как оказалось, не способен обнаружить этого движения, правда, в силу случайной причины — сокращения размеров тел, как раз компенсирующего неравенство путей, проходимых продольным и поперечным световыми сигналами в неподвижной системе отсчета.  [c.255]

Пока еще нет физически ясной теории турбулентности. Из-за хаотичности пульсаций скоростей и других характеристик турбулентного потока при его изучении применяются статистические методы, в которых эти характеристики рассматриваются как случайные функции от точек пространства и времени. Основы такого подхода к теории турбулентности были впервые разработаны советскими учеными А. А. Фридманом и Л. В. Келлером в 1924 г. Важные результаты были получены советским ученым А. Н. Колмогоровым, открывшим закон /з. Этот закон устанавливает связь в каждый данный момент между значениями мгновенных скоростей VI и Уз в двух точках потока, отстоящих друг от друга на расстоянии г, небольшом по сравнению с размерами крупных вихрей в потоке, со средним квадратом разности пульсаций скоростей  [c.147]

Следует заметить, что в последующем само понятие браунов-ского движения значительно расширилось. Специальный раздел теории вероятностей, имеющий дело с соответствующим типом случайных процессов (см. гл. V), использует для их обозначения термин брауновское движение , т. е. в этом смысле брауновским движением называют любые случайные процессы такого типа независимо от их физической (или даже химической, биологической, экономической и т. д.) природы.  [c.38]

ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ и ЕЕ ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ  [c.61]

Пожалуй, центральную роль в физических приложениях играют гауссовские (нормальные) случайные процессы, имеющие гауссовские (Рг, см. (5.6)) конечномерные распределения  [c.65]

Последнее условие обеспечивает малую вероятность резких значительных изменений случайного процесса и в конечном счете позволяет описывать его с помощью непрерывных траекторий. Процессы, удовлетворяющие этим условиям иногда в соответствии с их физическим смыслом, называют диффузионными процессами.  [c.68]

Для наиболее часто встречающихся корреляционных функций зависимости нахождения эффективного периода Tg приведены в табл. П.З [16], в которой для ряда недифференцируемых процессов приведены оценки эффективного периода, которые согласуются с физической природой случайных процессов, но которые невозможно получить формальными математическими методами.  [c.123]

Физический маятник представляет собой тело массы т, вращающееся вокруг горизонтальной оси его момент инерции I и смещение / центра масс относительно оси считаются заданными. Силы сопротивления, пропорциональные скорости, таковы, что при свободных колебаниях маятника отношение предыдущего разма.ха к последующему равно q. Точка подвеса маятника совершает горизонтальные случайные колебания. Ускорение т точки подвеса можно считать белым шумом постоянной интенсивности Определить установившееся среднее квадратическое значение угла отклонения маятника при вынужденных колебаниях, а также среднее число выбросов п угла за уровень, в 2 раза превышающий среднее 1свадратнческое значение в течение времени Т.  [c.447]

Точка подвеса физического маятника, частота свободных колебаний которого равна /г =15 рад/с, а отношение последую-гцего размаха к предыдущему при свободных колебаниях равно т = 1,2, совершает горизонтальные случайные колебания. Скорость точки подвеса при колебаниях можно считать белым шумом  [c.447]

Большой аес в пршюжвниях имеют марковские процессы, в которых случайное изменение состояния некоторой системы зависит от непрерывно меняющихся параметров. Наиболее важным представителем таких марковских процессов служит физический процесс типа диффузии, в котором состояние системы характеризуется непрерывно меняющейся координатой некоторой частицы. Понятие марковского процесса - вероятностное обобщение динамической системы.  [c.34]

Материальные тела, изучением движения >чГеТ ы Та ического ИЛИ расчетом которых занимаются отдель-движения и механического ные из этих наук, весьма различны между взаимодействия, общие для собой. Но все ЭТИ науки имеют много об-любых материальных тел щего И объединены под названием механика не случайно движения материальных тел, так же как и их механические взаимодействия, обладают многими общими свойствами, независимыми от движущихся тел. Например, можно говорить о ско рости какого-либо тела независимо от того, что именно представляет собой это тело, будь то дождевая капля, футбольный мяч, поршень или самолет. Точно так же можно говорить о вращении материального тела независимо от того, является ли это тело маховым колесом, ротором молочного сепаратора, вальцом вальцового станка, волчком или планетой. Можно установить, следовательно, общие свойства движения материальных тел независимо от того, какие именно материальные тела совершают эти движения. Аналогично можно изучать и механические взаимодействия и их общие свойства, не интересуясь тем, какие именно физические тела взаимодействуют между собой.  [c.6]


Отложим пока исследование физических причин случайного изменения фаз колебаний за время наблюдения и рассмотрим схему явления, по-прежнему пользуясь синусоида.пьной идеализацией (что полностью соответствует условиям распространения монохроматических волн). Результаты такого исследования послужат своеобразным тестом. Мы получим возможность сравнивать с ними более сложные явления, наблюдаемые при суперпозиции произвольных электромагнитных волн, и оценивать, в какой степени они соответствуют нашей идеализованной схеме.  [c.180]

Мы можем образовать другие характеристические величины, имеющие размерность времени (или частоты), массы, скорости и т. д. Построение и оценка характеристических величин, имеющих физический смысл, является превосходным приемом при поисках решения конкретных физических проблем. Определение порядка этих величин служит своего рода сигналом, предостерегающим нас от пренебрежения особенностями явления, несущественными в одних случаях, но имеющими решающее значение в других. Стро 1тели мостов и конструкторы самолетов иногда сталкивались с катастрофическими результатами случайной недооценки эффектов, порядок величины которых можно было бы определить путем несложного расчета на листке бумаги,  [c.278]

Со времен Галилея известно, однако, что именно этим свойством отличается поле тяготения, в котором все массы приобретают одинаковые ускорения. Масса в поле тяготения является количественной характеристикой силы, с которой тело притягивается к другим телам ( тяжелая масса). С другой стороны, при движении тела под действием других сил, отличных от сил тяготения, масса является количественной характеристикой инертности тел, т. е. их способности замедлять процесс изменения собственной скорости ( инертная масса). Понятия инертной и тяжелой масс, казалось бы, не имеют между собой ничего общего, поскольку первое из них относится к движению в любых нолях, а второе — только в гравитационных полях. Тем более примечательными оказались эксперименты Р. Этвеша (1848—1919), показавшего (с достаточно большой точностью), что обе массы пропорциональны друг другу, и, следовательно, выбором единиц их можно сделать просто равными. Этот результат, первоначально казавшийся случайным, Эйнштейн воспринял как фундаментальный физический принцип, давший возможность сделать вывод о локальной эквивалентности полей сил инерции и тяготения и тем самым установить принцип эквивалентности инертной и тяжелой масс ). Следующее простое рассуждение, принадлежащее Эйнштейну, иллюстрирует эту мысль. Предположим, что в кабине лифта свободно падает твердое тело. Если кабина лифта покоится относительно Земли, то тело будет двигаться в локально однородном поле тяжести с постоянным ускорением g. Пусть теперь одновременно с телом свободно падает и кабина лифта. При одинаковых начальных условиях для кабины и тела последнее будет находиться в покое относительно кабины. В ускоренной (неинерциальной) системе отсчета, связанной с кабиной, на тело наряду с силой тяжести бу,дет действовать равная и противополоокная ей по направлению сила инерции, и под действием этих двух сил тело будет находиться в равновесии ( невесомость ).  [c.474]

Поэтому уже на стадии разработки ЭМУ настоятельно необходимо получение статистической оценки показателей его функциональной пригодности. Применение методов вероятностного анализа позволяет распространить возможности разработанных моделей физических процессов в ЭМУ на уровнеь технологических и эксплуатационных задач, обеспечивая новое качество исследования, отвечающее требованиям системного подхода к решению задач. Это требует построения стохастической математической модели ЭМУ, которая адекватно воспроизводила бы проявление случайных отклонений перечисленных факторов.  [c.131]

Программная система позволяет применять для оптимизационных расчетов гиродвигателей методы сканирования, статистических испытаний, градиента, случайного поиска, покоординатного улучшения функции цели (Гаусса—Зейделя). При этом имеется возможность проводить расчеты ГД различных типов асинхронных с короткозамкнутым ротором, синхронных с магнитозлектрическим возбуждением, синхронных реактивных, бесконтактных двигателей постоянного тока, а также ГД различных конструктивных схем и исполнений, с различными алгоритмами управления, что достигается применением общих методов и алгоритмов анализа физических процессов, определяющих функциональные свойства проектируемых объектов, рациональным выбором входных данных.  [c.231]

Объединяя все эти три случая с тем, который мы имели в предыдущем параграфе при сложении вращений вокруг пересекающихся осей, мы видим, что угловые скорости складываются так же, как и параллельные или сходящиеся силы. Аналогия здесь не случайная сила и угловая скорость представляются векторами различной физической, но одинаковой математической природы, так как оба эти вектора — скользящие. При доказательстве теорем, относящихся к этому и предыдущему параграфам, было использовано только это одно свойство угловой скорости, поэтохчу и результаты получены сходные с найденными ранее в статике.  [c.429]

Принцип относительности Галилея. Опыт не дает нам свиде-тельсгв сущ твования абсолютного пространства. Физические явления протекают одинаково в системах, движущихся равномерно и прямолинейно друг относительно йруга. Такие системы получили название инерциальных. Повседневная жизнь убеждает нас в справедливости этого принципа. Например, во время поездки на теплоходе по реке нам приходится обедать как на берегу, так и в каюте. При этом все наши действия остаются прежними, привычными, ничто не выдает нам того, что в одном из этих случаев мы движемся. Даже случайно выпавший из рук предмет падает на пол каюты так же отвесно, как и на берегу. Только резкий рывок или торможение теплохода могут напомнить нам о том, что мы движемся по отношению к берегу. Принцип, согласно которому законы физики должны быть одинаковы  [c.131]

Представление о виртуальных частицах радикально изменило привычные понятия о пустоте. Она оказалась весьма своеобразным физическим объектом, в ней непрерывно происходят процессы рождения и уничтожения виртуальных частиц. Ситуация из статической, мертвой превратилась в дина шческую, пустота получила название физического вакуума. Естественное объяснение имеет при этом отсутс1вие траектории у микрочастиц, статистический, вероятностный характер их движения. Случайно, нерегулярно возникающие виртуальные частицы непрерывно usauivio-действуют с реальными частицами. В результате параметры микрочастиц непрерывно меняются, флуктуируют. Непрерывно меняется их заряд из-за экранировки частиц виртуальными части-  [c.175]

Отметим, что хотя этот вывод бьш сделан на основе анализа распределения элементарных частиц по массам, гипотеза флуктуационного происхождения всех фундаментальных физических постоянных давно известна и широко обсуждается в научной литературе . Об этом говорил еще Л. Больцман (см. ч. 2, 3). Симптоматично название одной из книг, посвященных вопросу о роли фундаментальных постоянных Б наблюдаемой структуре Вселенной,— Случайная Вселенная [24]. Флуктуационная гипотеза происхождения констант признана как советс]шми [100, 101], так и зарубежными [102] авторами. Существует и другая точка зрения. В предисловии к [24] отмечается, что оценки типа рассматриваемых в книге характеризуют лишь вероятность случайного совместного выпадания нескольких событий. Эти оценки не применимы к причинно-связанным событиям, а как показывают приведенные примеры, рано или поздно причинная связь обнаруживается, и вероятностные соображения теряют всякий смысл .  [c.209]


Об импульсе фотона. Как уже отмечалось, Эйнштейн предполагал, что наблюдаемое в отсутствие излучения распределение (3.2.5) сохраняется и при наличии излучения. В работе К квантовой терии излучения Эйнштейн показал, что это предположение имеет интересный физический смысл. Он рассмотрел два разных механизма спонтанного испускания 1) излучение испускается в виде расходящейся от атома во все стороны сферической электромагнитной волны, и тогда импульс атома-излучателя на меняется 2) излучение испускается в виде кванта света, и тогда атом-излучатель получает всякий раз импульс отдачи, причем у разных атомов эти импульсы будут иметь случайное направление. Оказывается, что равновесие системы атомов, взаимодействующих с излучением, не нарушается только при условии, что имеет место второй из указанных механизмов спонтанного испускания и при этом импульс кванта света равен iiail . Таким образом, Эйнштейн привел дополнительное подтверждение существования световых квантов, характеризующихся наряду с энергией 1ъи> также импульсом Асо/с.  [c.73]

Изучение связей между величинами показало, что эти связи не являются случайными и частными, а имеют широкий, можно сказать, обнщй характер. В частности, было установлено, что если произвольно выбрать несколько физических величин, условно приняв их не зависящими друг от друга, а также от других величин, то ос1альные величины одного или нескольких раздел oi> физики могут быть  [c.19]

Время свободного пробега представляет собой время релаксации, т. е. время возвращения системы электронов на неравновесного состояния (например, при включении внешнего поля) в равновесное. Чисто физически понятно, что будет существовать разброс по величине свободного пробега, а потому не оовсем ясно, что необходимо понимать, когда говорят о дрейфовой окорости. Длины свободного пробега, времена овободного пробега будем рассматривать далее как случайные величины. Поиск функции распределения времен овободного пробега будем осуществлять, следуя правилам 1) вероятность испытания электроном столкновения в интервале времени (11 пропорциональна величине интервала (11 2) вероятность столкновения в единицу времени не должна зависеть от времени.  [c.129]


Смотреть страницы где упоминается термин Физическая случайная : [c.44]    [c.196]    [c.23]    [c.43]    [c.189]    [c.201]    [c.765]   
Основы метрологии, точность и надёжность в приборостроении (1991) -- [ c.17 ]



ПОИСК



Распределение вероятностей для значений случайной физической величины

Случайность

Теория случайных процессов и ее физические приложения



© 2025 Mash-xxl.info Реклама на сайте