Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термические Длительность нагрева и выдержки

Любой процесс термической обработки металла состоит из нагрева до заданной температуры, выдержки и охлаждения (рис. 48). Длительность нагрева и выдержки изделия (детали) при заданной температуре зависит от вида нагревающей среды формы изделия, его теплопроводности, а также от времени, необходимого для завершения структурных превращений.  [c.250]

Наряду с формой и длительностью термического цикла на продольную термическую деформацию существенно влияют форма образца и скорость его прогрева. Аналогичные зависимости для корсетного тонкостенного образца получены и в работе [68] при варьировании времени нагрева и выдержки, однако из-за меньших массы металла образца и уровня температур  [c.38]


Конструкция образца может менять характер развития продольной термической деформации [96] как на этапе нагрева (рис. 3.10, б, г), так и на этапе выдержки (рис. ЗЛО, в, д). Q увеличением времени нагрева и выдержки термическое расширение корсетных образцов сплошного сечения (рис. 3.8, д) и тонкостенного (рис. 3.8, г) увеличивается, а для цилиндрического трубчатого образца уменьшается. При длительном нагреве проявляется эффект теплового насыщения образца, и термическое удлинение не зависит от Бремени (скорости) нагрева. Однако из-за меньшей массы металла в корсетном тонкостенном -образце при одинаковых температурах предельная продольная термическая деформация достигается существенно раньше.  [c.137]

В работе [318] исследовали механические свойства сплава ВТ9 после СПД и после нагрева и выдержки при температуре деформации, но без деформирования — обработка без деформации (ОВД). После обработки по указанным двум схемам заготовки сплава охлаждали на воздухе. При таких условиях охлаждения микроструктура сплава чрезвычайно сильно изменялась по сравнению с высокотемпературным состоянием, поскольку происходил не только распад метастабильной фазы, но и изменение количества и размеров первичной а-фазы [294]. Далее заготовки подвергали старению по стандартному режиму. После этого часть заготовок сплава длительно выдерживали при температуре старения (испытание на термическую стабильность). Такая обработка не равносильна перестариванию, ибо в процессе длительной выдержки наблюдается не разупрочнение, а упрочнение сплавов вследствие распада метастабильных фаз. Важно то, что термическая стабильность чувствительна к исходному структурному состоянию сплава [292, 294]. В этой связи возникает ряд вопросов о влиянии СПД на механические свойства титановых сплавов. Во-первых, необходимо выяснить влияние СПД при наличии фазовой перекристаллизации  [c.211]

Термическая обработка титановых сплавов может очень сильно влиять на склонность к коррозионному растрескиванию, при этом изменяются и и скорость распространения трещины. Важнейшие факторы здесь температура нагрева, время выдержки и особенно скорость охлаждения. Наиболее благоприятная термическая обработка всех титановых сплавов, повышающая их стойкость к коррозионному растрескиванию,—нагрев до температуры, близкой к (а + ) переходу, небольшая выдержка при этих температурах и быстрое охлаждение, при этом решающим фактором режима обработки является скорость охлаждения. Наоборот, длительные отжиги при средних и низких температурах и особенно с медленным охлаждением сильно увеличивают склонность сплавов к коррозионному растрескиванию. Естественно, что влияние термической обработки на сплавы различных классов неодинаково [36]. Сплавы а и псевдо-а-сплавы, если в них не более 6 % алюминия и нормированное содержание газовых примесей (Оа, М, На), ускоренным охлаждением от температур, близких к (о + /3) /3-переходу, можно перевести в разряд практически не чувствительных к растрескиванию в галогенидах. Термическая обработка (а + ) сплавов, легированных -изоморфными элементами, в меньшей степени влияет на их чувствительность к коррозионной среде, чем термообработка а-сплавов. Влияние термообработки на коррозионное растрескивание стабильных /3-сплавов мало изучено, но при этом общие закономерности сохраняются.  [c.40]


Рекомендуемые режимы термической обработки медленный нагрев до температуры закалки (не менее 2 ч), выдержка при 515 5° С в течение 10—15 ч, закалка в воде с температурой 20—100° С. Чем сложнее конфигурация и больше габаритные размеры деталей, тем должны быть больше длительность нагрева под закалку и выше температура закалочной среды.  [c.87]

Рассмотрим влияние выдержки между циклами (режим длительной термической усталости в отличие от кратковременной при непрерывном чередовании нагревов и охлаждений) на число циклов до разрушения [2]. При постоянной максимальной температуре цикла  [c.40]

Качество готового проката зависит от общей продолжительности нагрева металла в печи и скорости нагрева. Одним из основных требований, предъявляемых к нагреву, является равномерность распределения температуры по сечению заготовки. Равномерность нагрева заготовок можно обеспечить длительной выдержкой металла в печи. Однако длительная выдержка при температуре >800°С связана с образованием окалины, обезуглероживанием. Ускоренный нагрев для ряда сталей также нежелателен. Например, при нагреве высоколегированных сталей в результате недостаточного внутреннего теплообмена образуются трещины по сечению заготовок, которые приводят к браку металла или снижению его механических свойств. Практически установлена длительность нагрева слитков от 2 до 12 ч. При нагреве слитков, имеющих исходную температуру 800— 900°С, требуется 2 ч для нагрева их до температуры прокатки. При нагреве холодных слитков необходимо принять такую скорость, чтобы термические напряжения не превышали критических значений. Например, если слитки с содержанием 0,3—0,45 % С нагревают до температуры прокатки за б—7 ч, то слитки стали с большим содержанием углерода следует нагревать с меньшей скоростью и длительность нагрева составит 8—9 ч.  [c.268]

Различие в термической обработке легированной и углеродистой сталей состоит в выборе различных температур и скорости нагрева, длительности выдержки при этих температурах и способе охлаждения.  [c.143]

Некоторые легирующие элементы уменьшают теплопроводность стали, поэтому при нагреве и охлаждении в легированных сталях образуются большие внутренние напряжения. Скорость нагрева этих сталей должна быть меньше, чем углеродистой стали. Некоторые легирующие элементы уменьшают скорость диффузии, поэтому при термической обработке легированных сталей требуется давать длительные выдержки, достаточные для полного протекания диффузионных процессов, необходимых для выравнивания химического состава.  [c.155]

Высокая температура нагрева и длительная выдержка вызывают большой расход топлива, значительное окисление поверхности ме галла и рост зерен аустенита. Поэтому гомогенизация применяется как подготовительная операция в случае только термической обработки весьма ответственных деталей. Наиболее целесообразно проведение гомогенизации сразу после затвердевания слитка или отливки. После того как слиток закристаллизовался, его помещают в колодец, в котором поддерживается температура 1200—  [c.91]

В результате этого основные изменения, связанные с прочностью и пластичностью сварного соединения в целом, происходят главным образом в околошовной зоне свариваемых сталей. Поэтому режимы термической обработки — температура нагрева и длительность выдержки должны обеспечивать возможность улучшения структуры в околошовной зоне.  [c.67]

Конечные структуры и свойства металла при обычной печной термической обработке зависят от длительности выдержки при температуре нагрева и, главным образом, при нагреве выше критических температур, от скорости охлаждения, определяющей возможность той или иной степени завершенности превращений в металле при обратных структурных превращениях во время понижения температуры.  [c.335]

Разрушение детали может быть вызвано действием температурных напряжений от повторных нагревов и охлаждений, связанных с тепловым процессом машины или внешними условиями. Сопротивление такому виду разрушения называют термической прочностью. При высокой верхней температуре цикла важное значение Имеет длительность выдержки при Этой температуре. Для повышения термической прочности должны выполняться те же требования, что и для малоцикловой прочности, кроме того, следует принимать меры к снижению Температурных напряжений в детали,  [c.37]


Необходимо отметить существенную разницу между условиями обычного печного нагрева с гомогенизирующей выдержкой при температуре немного выше температуры начала фазового превращения Гд. ф и условиями, принятыми нами для сварки (рис. 17). В первом случае к моменту начала охлаждения образцов размер зерна аустенита и степень его гомогенизации во всех образцах одинаковы, так как условия пагрева и выдержки идентичны. В условиях термического цикла сварки при одинаковой длительность пребывания металла выше при охлаждении для образцов 1, 2, 3 различна. Поэтому размер зерна аустенита и степень его гомогенизации перед превращением неодинаковы. Учет этих различий позволил при анализе полученных нами диаграмм превращения и сравнении их с диаграммами, построенными для условий печной термообработки, установить особенности кинетики превращения аустенита в околошовной зоне при сварке.  [c.56]

Описанный выше процесс фиксирования быстрым охлаждением неустойчивого состояния носит название закалки, а последующий процесс постепенного приближения к равновесному состоянию (путем нагрева или длительной выдержки) называется отпуском и старением. Столь разнообразное изменение структуры, достигаемое разной степенью приближения сплава к равновесному состоянию, приводит к разнообразному изменению свойств, чем и обусловлено широкое применение термической обработки, в основе которой заложены процессы неравновесной кристаллизации, в общих чертах описанные выше.  [c.144]

Термический цикл околошовпой зоны при электрошлаковой сварке характеризуется длительным ее нагревом и выдержкой при температурах перегрева и медленным охлаждением. Поэтому  [c.213]

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

На рис. 116 приведены характерные диаграммы выносливости на оксидированных и не оксидированных гладких и надрезанных образцах диаметром рабочей части 6 мм при круговом консольном изгибе, полученные Н. И. Лошаковой, С. Ф. Юрьевым и Г. Н. Всеволодовым. Оксидирование проводили путем нагрева образцов в открытой электропечи до 800°С и выдержке в течение 1 ч с получением слоя повышенной твердости толщиной 40 мкм. Материал образцов — сплав Т —4 % А1 (ВТ5 с несколько пониженным содержанием алюминия). Из рис. 116 видно, что термическое оксидирование может резко снижать предел выносливости. Особенно велико это снижение при испытании гладких образцов (почти в 2 раза), у надрезанных (а. ==3,5) оно не превышает 25 %. Подобное влияние термического оксидирования на усталостную прочность обнаружено при испытании сплавов ВТЗ-1, ВТ6 и др. [ 178, с. 236—247 179 180]. Обобщенные результаты исследований, характеризующие зависимость предела выносливости сплава типа ВТ5 от режима оксидирования, приведены на рис. 117. Как следует из этого рисунка, повышение температуры и увеличение продолжительности изотермического окисления сопровождаются снижением предела выносливости оксидированных при 750—800°С гладких образцов на 30—50 %, надрезанных на 25—30 %. С повышением температуры оксидирования усталостная прочность гладких образцов снижается более резко, чем при увеличении длительности процесса. Уменьшение выносливости надрезанных образцов происходит в первые часы выдержки, а при дальнейшем повышении и длительности  [c.184]

Основные параметры режима термомеханического нагруя ения, определяющие специфику малоциклового разрушения — форма и длительность циклов нагруяшния и нагрева, наличие выдержки под нагрузкой в полуциклах сжатия и растяжения, а так ке температурной выдержки при крайних температурах цикла нагрева уровень циклических температур и характер их изменения в связи с циклом механического нагружения сочетание циклов нагрева и нагружения, степень их фазности и др. Основным здесь является тот факт, что независимое циклическое упругопластическое деформирование протекает в каждом цикле при изменяющейся температуре, причем для многих элементов конструкции характерен термоусталостный режим нагружения (рис. 1, Г), реализующийся, как правило, с выдержкой при максимальной температуре. В этом случае циклическое упругопластическое нагружение зависит от параметров термического цикла и поэтому ему свойственно характерное сочетание циклов нагрева и нагружения вида, показанного на рис. 1, В.  [c.36]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]


Для определения коэффициентов аир уравнения (2.34) в соответствии с методикой обработки экспериментальных данных достаточно испытать три-четыре серии образцов по общему режиму ие-изотермического малоциклового нагружения при варьировании основных параметров (например, /в), чтобы реализовать различные соотношения щ1ар Уравнение (к34), характеризующее нелинейный закон суммирования повреждений при вычислении их по соотношениям (2.30), является основой для определения разрушающего числа циклов Nf материала в опасной зоне конструктивного элемента с использованием характеристик длительной и малоцикловой прочности. В последнем случае необходимо выдержать определенное сочетание полуциклов нагрева и охлаждения. Приближенно характеристики малоцикловой прочности можно получить при испытаниях на термическую усталость, если в реальном объекте иолуцикл сжатия приходится на область высоких температур и выдержки осуществляются при 7 тах-  [c.91]

Снятие сварочных напряжений при термической обработке определяется интенсивностью протекания релаксационного процесса во время нагрева изделия и выдержки при заданной температуре. По данным большого числа работ [12, 99], для конструкций из малоуглеродистых сталей оно проходит достаточно эффективно уже при температуре 600° С, а при длительных выдержках — и при температуре 550° С. Те же самые режимы с точки зрения снятия сварочных напряжений применимы и для ряда низколегированных конструкционных сталей марок 15ГС, 09Г2С и им подобных.  [c.84]

Для определения термического цикла пайки недостаточны одни лишь данные о совместимости паяемого материала с припоем, флюсом, газовыми средами, а также оптимальной температуре пайки и выдержки при ней, полученные на лабораторных образцах без учета масштабных и конструкционных факторов изделия и его массы. Лабораторные образцы сравнительно малы по размеру и просты по конструкции. Режимы пайки, полученные в лабораторных условиях, можно применять лишь для простых по конструкции изделий, размеры которых соизмеримы с размерами лабораторных образцо]в. Для конструктивно сложных изделий относительно больших размеров и массы, особенно при пониженной теплопроводности паяемого материала, при лабораторных Испытаниях остаются не выясненными длительность нагрева изделия до температуры пайки и длительность его охлаждения после пайки. Между тем при иагреве и охлаждении изделия процесс контактного взаимодействия на границе паяемого металла с технологическими и вспомогательными материалами развивается во времени. Поэтому влияние цикла пайки на протекание таких процессов, а следовательно, и на качество изделия в целом может быть весьма существенным. Кроме того, анализ конструкционной сложности и учет масштабного фактора и массы изделия необходимы как при выборе способа нагрева, так и при расчете термического цикла пайки для предотвращения развития в его элементах недопустимых тепловых пластических деформаций.  [c.237]

Термическая стабильность сплава ВТ8. Термическая стабильность сплава ВТ8 была проверена после двойного отжига и дополнительной выдержки до 9000 ч при температуре 500° С. Для оценки влияния поверхностного окисления длительному нагреву подвергали как готовые образцы, так и заготовки иод образцы. Результаты испытания образцов прп 20° С после длительной выдержки приведены на рис. 20. Предел прочности силава практически не изменяется от продолжительности нагрева. Пластические свойства (отпос1ггельное поперечное сужение) изменяются незначительно. Наибольшее относительное снижение поперечного сужения достигает 40% после выдержки 9000 ч. Потеря пластичности от окисления поверхности сравнительно небольшая, что позволяет ис-иользовать сплав ВТ8 па длительные ресурсы без покрытий.  [c.94]

При изготовлении поковок сечением 3000 мм и массой >-240 т возникают условия, способствующие образованию в стали крупного зерна аустенита. К этим условиям относятся особенности кристаллизации крупных слитков, трудности проведения горячей пластической деформации — длительные, многократные (да 14 раз) нагревы под ковку, достигающие 1250° С, неравномерная деформация по сечению поковки, вынужденный отказ (из-за технических трудностей) от опера-ими осадки на слитках массой >300 т, а также малые скорости нагрева и охлаждения при перекристаллизации и продолжительные выдержки в процессе аусте-питизации во время термической обработки (табл. 6).  [c.637]

Выбор материала и конструкции разрядного канала. Керамика из AI2O3 широко применяется в вакуумной технике, в том числе и при высоких температурах [177]. И тем не менее даже в настоящее время трудно иметь полное представление о ее поведении в процессе длительного срока службы при воздействии различных факторов (температуры, среды, нагрузок и т.д.). В работе [178] показано, что наиболее сильное влияние на свойства керамики оказывает высокая температура при длительном нагреве изменяется ее микроструктура — происходит так называемое термическое старение. Этот процесс связан с рекристаллизацией (ростом кристаллов) керамики, сопровождающейся уменьшением ее кажущейся плотности, прочности, термостойкости, теплопроводности, ползучести и испарения. Керамика из окиси алюминия подвергается существенному старению даже при относительно невысоких температурах, если время нагрева составляет тысячи часов. Термическая обработка (выдержка) корундовой керамики при 1300 °С в течение 500, 1000 и даже 2000 ч практически не приводит к заметному изменению ее структуры. Нагрев до 1700°С вызывает резкие изменения уже в первые часы работы. Установлено [178], что прочность спеченной керамики после нагрева в вакууме при 1900 °С в течение 10 ч снижается примерно в четыре раза, при этом размер кристаллов увеличивается в шесть раз. Поэтому керамика А-995, работающая в АЭ на парах меди при температурах 1500-1600 °С, с целью сохранения ее свойств предварительно подвергается обжигу при более высоких температурах. В нашем случае температура обжига составляет (1700 20) °С.  [c.37]

В остальных интервалах температур, кроме интервала дегидратации, режим скоростного однорядного обжига выбирают по максимальным скоростям нагрева и охлаждения, определяемым допустимыми термическими напряжениями изделий, а также при наличии температурного буфера между максимальной температурой обжига и температурой 600—700° С. При скоростных режимах однорядного обжига максимальная температура обжига, как правило, на SOSO" С выше по сравнению с обычным режимом в туннельной печи. Длительность выдержки при максимальной температуре для неглазурованных плиток должна составить 4—5 мин, для глазурованных — от 5 до 20 мин (в зависимости от свойства глазури).  [c.398]

Особенностью сплавов магния является малая скорость диффузии находящихся в нем легирующих элементов и их ликвация. Поэтому основной термической обработкой большинства магниевых сплавов является отжиг. Отжиг деформируемых сплавов проводят при 30()—350° С с целью снятия напряжений и повышения пластичности. Термическая обработка литых сплавов заключается в нагреве до 420° С и выдержке при этой температуре от 12 до 16 ч с последующим охлаждением на воздухе. Такая длительная выдержка необходи-  [c.373]

Общая длительность нагрева металла при термической обработке Тобщ складывается из времени собственно нагрева до заданной температуры Тц и времени выдержки при этой температуре т,, Ч общ = Гн + Тв- Время нагрева зависит от типа печи, размеров деталей, их укладки в печи время выдержки зависит от скорости протекания фазовых превращений.  [c.142]


Деформации от внутренних напряжений. Внутренние напряжения возникают при изготовлении заготовок и в процессе их механической обработки. В литых заготовках, штамповках и поковках возникновение внутренних напряжений происходит из-за неравномерного охлаждения, а при термической обработке деталей — по причине неравномерного нагрева и охлаждения и структурных превращений. Для полного или частичного снятия внутренних напряжений в литых заготовках их подвергают естественному или искусственному старению. Естественное старение представляет собой весьма длительное выдерживание заготовки на воздухе. Искусственное старение осуществляется путем медленного нагрева заготовок до 500—600° С, выдержки при этой температуре в течение 1—6 ч и последующего медленного охлаждения. Старение литых заготовок корпусных деталей, как например блоков цилиндров, является весьма важным и, как показывают исследования, из-за отсутствия полного старения соосность постелей коренных подшипников нарушается ввиду остаточных внутренних напряжений. Для снятия внутренних напряжений в штамповках и поковках их подвергают нормализации. Внутренние напряжения в процессе механической обработки возникают в поверхностном слое и могут быть сжимающими или растягивающими. Сжимающие напряжения повышают усталостную прочность деталей, растягивающие снижак)т. Напряженное состояние приводит к деформированию детали. По мере последовательного проведения всех этапов механической обработки с использованием все более легких режимов резания внутренние напряжения постепенно снижаются и на последнем этапе обработки часто ими можно пренебречь.  [c.20]

В случае кратковременности сварочного нагрева и по существу минимальной выдержке при Ттах на окончательную структуру и свойства влияет и ветвь нагрева металла. Непродолжительное пребывание металла выше критических температур приводит к тому, что образующиеся новые структурные фазы могут не выравнить свой состав. Поэтому кристаллы этой высокотемпературной фазы (например, аустенит, получившийся при нагреве из ферритоперлитной структуры) к моменту охлаждения могут быть не гомогенизированными, т. е. иметь различную концентрацию элементов в различных участках одного и того же зерна. Это может вызвать различные результаты термического воздействия на конечную структуру и свойства при одинаковых циклах охлаждения, но при различной длительности достижения Гтах и выдержке при этой температуре. В целом быстрый нагрев и малая выдержка приводит к меньшему росту зерна для данной Тщах (см- рнс. УП.З), чем при медленном нагреве и длительной выдержке при Т = Ттах, но при охлаждении с достаточно большими скоростями будет способствовать получению менее равновесной структуры по сравнению с такой же скоростью охлаждения Шохл более гомогенизированного при высоких температурах металла.  [c.335]

Способность сплава выдерживать воздействие сред при высоких температурах, особенно при длительных выдержках, зависит не только от диффузионно-барьерных свойств пленок продуктов реакции, но и от адгезии таких пленок с основным металлом. Пленки, имеющие защитные свойства, часто отстают от поверхности металла (отслаивание окалины) при циклическом нагревании и охлаждении вследствие различия в коэффициентах термического расширения у пленки и металла. В соответствии с этим разработанные Американским обществом по испытанию материалов ускоренные испытания проволок на стойкость к окислению [291 заключаются в циклическом нагреве с выдержкой в течение 2 мин при определенной температуре с последующим двухминутным периодом охлаждения. Переменный нагрев и охлаждение значительно сокращают срок службы проволоки посравнениюс постоянным нагревом. Срок службы проволоки в этих испытаниях определяется временем до разрушения или временем до увеличения ее электрического сопротивления на 10 o.  [c.162]

Структура основной массы чугуна может быть сильно изме- нена под влиянием термической обработки — перлитную основу можно превратить в ферритную, и наоборот. Заметная гра-фитизация чугуна начинается при нагреве выше температуры 400—500° С. Поэтому чугун, подвергаемый нагреву и длительной выдержке, обычно не сохраняет свою первоначальную структуру.  [c.279]

Появление 475-градусной хрупкости металла сопровождается увеличением твердости хромистого б-феррита. Так, после выдержки при температуре 500° С в течение 1500 ч микротвердость б-феррита металла швов типа Х17Н2 увеличилась на 70—75 кГ/мм , вследствие чего общая твердость металла возросла на 58—62 НУ [25]. Вместе с тем металлографическим и электронно-микроскопическим анализами не удается обнаружить какие-либо изменения в микроструктуре остаренного металла, в том числе в строении легированного б-феррита. Следовательно, увеличение твердости и хрупкости высокохромистого металла при термическом старении в данном случае может быть обусловлено только изменениями в кристаллической решетке твердого раствора. Появление хрупкости высокохромистых швов в процессе длительного нагрева в области критических температур (450—530 С) связано с образованием в твердом растворе богатых хромом комплексов, когерентно связанных с кристаллической решеткой феррита [18]. Комплексы имеют кубическую объемноцентрированную решетку с параметром 2,878 А и по составу отвечают сплаву, содержащему 70% Сг и 30% Ре. Вследствие того, что параметр решетки комплекса отличается от параметра решетки твердого раствора, в металле возникают местные искажения, что и приводит к повышению его твердости и хрупкости. Последующий отпуск швов  [c.86]

Размеры сварного соединения влияют на характер температурного поля и термического цикла, определяя также существенные для формирования механических свойств металла шва характеристики наибольшую температуру нагрева Т ах, длительность выдержки лгеталла в иптервале температур выше критических /д и скорость ого охлаждения охл-  [c.199]


Смотреть страницы где упоминается термин Термические Длительность нагрева и выдержки : [c.676]    [c.27]    [c.160]    [c.310]    [c.77]    [c.176]    [c.29]    [c.169]    [c.54]    [c.16]    [c.232]    [c.345]   
Производство зубчатых колес (1963) -- [ c.0 ]



ПОИСК



Нагрев выдержка

Термическая прн нагреве



© 2025 Mash-xxl.info Реклама на сайте