Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Передачи Потери относительные

Благодаря небольшим допустимым удельным давлениям на поверхность текстолита (см. табл. XII. 2), такие передачи имеют относительно большие размеры. К. п. д. передачи с диском, облицованным накладками из текстолита, меньше, чем к. п. д. передачи со стальными дисками или чугунными причиной этого является относительно большая потеря энергии внутри текстолита (гистерезисные потери).  [c.264]

Цепные передачи применяют в при-водах сельскохозяйственных, подъем-но-транспортирующих машин, автомобилях и др. Цепные передачи, как и ременные, относятся к передачам с гибкой связью. Они имеют аналогичную структуру (передача состоит из двух звездочек, соединяемых цепью, рис. 8.1), но существенно отличаются принципом действия — это передачи зацеплением. Цепные передачи компактнее ременных, работают при больших нагрузках без проскальзывания, меньше нагружают валы. Их используют для передачи мощности до 100 кВт при скорости цепи до 15 м/ч и межосевых расстояниях до 8 м. Потери на трение сравнительно невелики (т) = = 0,92... 0,96). Однако цепные передачи характеризуются относительно быстрым изнашиванием шарниров, повышенными требованиями к точности сборки, более сложными условиями эксплуатации, шумом и вибрацией при работе.  [c.133]


Потери мощности на трение в силовых планетарных передачах относительно небольшие и при проектировочных прочностных расчетах можно их не учитывать. При таком допущении соотношение  [c.163]

При более точных (проверочных) расчетах принимаются во внимание факторы, которые учитываются коэффициентом полезного действия. Последний определяется из следующих предположений. Потеря мощности в планетарной передаче образуется из потерь на трение в зацеплениях, опорах и потерь на размешивание и разбрызгивание масла. Расчетным путем относительно точно можно определить потери в зацеплении и опорах. Аналитическое определение гидравлических потерь сложно и приближенно, поэтому их определяют опытным путем. Обычно они составляют небольшую часть от потерь в зацеплении и в расчетах часто не учитываются.  [c.165]

В планетарных механизмах передача энергии от ведущего вала к ведомому осуществляется как в переносном, так и в относительном движениях звеньев. В результате вращения звеньев вокруг центральной оси с угловой скоростью Ын водила (переносное движение) возникают потери энергии, обусловленные трением в опорах центральных звеньев, а также потери на перемешивание и разбрызгивание масла. Этими потерями обычно пренебрегают.  [c.331]

Рис. 11.8. Относительные потери в червячной передаче Рис. 11.8. <a href="/info/108802">Относительные потери</a> в червячной передаче
Опоры качения и скольжения для поступательно и вращательно перемещающихся пар ввиду низкой точности используют в схемах измерения редко. Вместо передач типа показанных на рис. 6.8 и 6.10, г применяют звенья, подвешенные на плоских пружинах. Пружинные опоры (рис. 6.10, а—в, д, е) имеют значительно меньшие погрешности, связанные с непостоянством перемещения и поворота. Недостатки подобных передач — относительно небольшие перемещения и возможность потери устойчивости плоских пружин при значительных продольных нагрузках.  [c.146]

В клиноременной передаче добавляются еще потери на радиальное скольжение ремня в канавке и на его сжатие. К. п. д. передачи резко снижается при относительно малых нагрузках — малых г > (см. рис. 6). Для коэффициентов тяги, близких по значениям к фо, к. п. д. достигает наибольшей величины.  [c.489]


Коэффициент полезного действия фрикционных передач в основном определяется потерями в результате относительного скольжения катков и потерями в опорах валов. Экспериментально установлено, что для закрытых передач к. п. д. Г1 = 0,92...0,98, для открытых т =0,8...0,92.  [c.69]

При расчете гидравлических турбин поток в меридиональном сечении принимают потенциальным, при расчете насосов — равноскоростным. В гидродинамических передачах имеет место сочетание различных рабочих органов (рис. 14). Проведенные расчеты и испытания показали, что лучшие результаты получаются при задании равноскоростного потока или потока, обратного потенциальному. Это объясняется тем, что в случае равноскоростного и обратного потенциальному потоков поле скоростей в насосе у тора, а у турбины на диффузорном участке более благоприятное, чем в случае потенциального потока. При потенциальном потоке происходит резкое падение меридиональных скоростей на диффузорных участках, а следовательно, уменьшение относительных скоростей, что ведет к отрыву потока с образованием вихрей и к резкому увеличению потерь. Равноскоростной и обратный потенциальному потоки дают более плавное изменение относительных скоростей в области колеса, и с точки зрения гидродинамики реальной вязкой жидкости они являются наиболее благоприятными для безотрывного обтекания профиля лопасти.  [c.121]

Сравнительно невысокий к. п. д. У червячной передачи к. п. д. обычно значительно ниже, чем у зубчатой пары, вследствие больших потерь на относительное скольжение под нагрузкой сопряженных профилей червяка и колеса. В передачах с много-заходными червяками при тщательном изготовлении удается достигнуть т] = 0,95.  [c.224]

В результате несимметричного расположения косого зуба относительно обода при передаче усилий от одного зуба к другому возникает, как это будет установлено далее, составляющая сила, направленная параллельно оси колеса и стремящаяся сдвинуть колесо вдоль вала. Для погашения действия этой силы приходится снабжать вал упорным подшипником, что удорожает всю установку в подшипнике появляются дополнительные потери на трение, величина которых оказывается тем больше, чем больше угол Рд наклона зуба. В практике рекомендуется применять косозубые колеса с углом Рд не более 30°.  [c.58]

КПД ременной передачи зависит от коэффициента тяги ср и соответствующего ему относительного скольжения ремня (рис. 18.8). По мере увеличения относительной нагрузки до некоторого значения ф наблюдается линейное нарастание скольжения ремня от упругих деформаций, сопровождаемое ростом КПД из-за уменьшения влияния потерь холостого хода.  [c.300]

Классификация. По расположению червяка относительно колеса (рис. 11.1) различают передачи с нижним (а), верхним 6) и боковым (в) червяком. При окружных скоростях червяка Di 5m применяют нижний червяк, при и,>5м/с — верхний червяк (во избежание больших потерь мощности на перемешивание и разбрызгивание масла). Чаще всего расположение червяка определяется компоновкой изделия.  [c.240]

Потери энергии в зубчатых передачах. Условный силовой полюс зацепления. Потери энергии в зубчатом зацеплении вызываются качением и скольжением зацепляющихся зубьев. Так как при этом плечо О В точки приложения силы трения f.[, =/T.II (рис. 9.23) относительно оси вращения первого колеса мало (OjS я sin а), то момент силы трения тоже  [c.255]

Способы передачи крутящего момента от диска к валу. Роторы судовых паровых турбин обычно цельнокованые. В проточной части низкого давления иногда применяют роторы с насадными дисками, на случай потери натяга при быстром прогреве предусмотрены шпонки. Чтобы избежать ослабления вала, шпонки располагают вдоль вала не в одну линию, а под углом 120° относительно друг друга по окружности.  [c.30]

При переменном токе в стали как в ферромагнитном материале заметно сказывается поверхностный эффект, поэтому в соответствии с известными законами электротехники активное сопротивление стальных проводников переменному току выше, чем постоянному току. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис. В качестве проводникового материала обычно применяется мягкая сталь с содержанием углерода 0,10—0,15 %, имеющая предел прочности при растяжении ар=700—750 МПа, относительное удлинение перед разрывом А///= = 5 — 8 % и удельную проводимость у, в 6—7 раз меньшую по сравнению с медью. Такую сталь используют в качестве материала для проводов воздушных линий при передаче небольших мощностей. В подобных случаях применение стали может оказаться достаточно  [c.203]


Это отношение будет чрезвычайно велико при больших передаточных отношениях, а так как потери в передаче обусловливаются моментами Мч Мз г М4 и соответствующими им мощностями в относительном движении, то получается чрезвычайно невыгодное  [c.423]

Потери от проскальзывания вследствие масляной плёнки на рабочих поверхностях, толчкообразной нагрузки и т. д. составляют от передаваемой мощности долю, не превышающую относительного скольжения <]/, и, следовательно, нормально меньше 2 -3%, а у ряда передач ещё значительно меньше.  [c.422]

Преимущественное применение в выполненных конструкциях перегрузочных мостов получили грузовые тележки — магнитные (фиг. 23) и грейферные (фиг. 24). передвигающиеся обычно по нижним поясам главных ферм. Они обладают меньшим весом, чем поворотные стреловые краны, и допускают, таким образом, возможность снижения веса металлоконструкций мостов кроме того, относительно малая (по сравнению с кранами) габаритная высота их определяет повышение устойчивости мостов при действии ветра. Реже применяются грузовые тележки с поворотными стрелами (фиг. 25), которые сохраняют достоинства поворотных кранов (обслуживание больших площадей без передвижек мостов), выгодно отличаются от них меньшими потерями времени на операции подъёма груза (так как при горизонтальном перемещении отпадает необходимость передачи груза над пролётным строением моста), но, однако, обусловливают утяжеление металлоконструкций мостов.  [c.965]

Важные достоинства червячных передач — плавность и относительная бесшумность в сравнении с зубчатыми передачами и возможность получения большого передаточного числа i (редуцирования) при одной сцепляющейся паре. Величина i может доходить до нескольких сотен (например, в приводах круглых столов металлорежущих станков). Для получения больших i применяют обычно однозаходные червяки с малым углом подъема, что связано с большими потерями на трение. Поэтому нерационально использовать большие i для передачи сколько-нибудь значительных мощностей. Червяки с Zj = 1 применяют обычно в маломощных приводах, в приводах с кратковременными включениями, в ручных передачах, в делительных головках, в приводе подачи зуборезных станков и др.  [c.855]

Червячная передача, состоящая из червячного колеса 2 и цилиндрического червяка 1 (рис. 214, а), относится к передачам со скрещивающимися осями, расположенными под углом 90°. Червячные передачи щироко применяют в делительных механизмах зуборезных станков, подъемных механизмах, приборах, в которых требуется плавная, бесшумная работа и высокая равномерность вращения. По сравнению с другими видами передач, червячные передачи могут передавать крутящие моменты с большим передаточным числом при небольших габаритах. Линейный контакт между зубьями, относительно большое число зубьев, находящихся одновременно в зацеплении, позволяют им передавать большую нагрузку. Высокий коэффициент скольжения при зацеплении зубьев обеспечивает передаче бесшумную и плавную работу. Точно изготовленная червячная передача имеет высокую равномерность вращения. К недостаткам червячной передачи относятся высокая затрата мощности на преодоление трения в зацеплении, достаточно высокий нагрев, быстрый износ зубьев, сравнительно низкий КПД (50 — 90%). Чем меньше угол подъема витка червяка и хуже качество поверхности на профилях зубьев, тем больше потери мощности. Для уменьшения потери мощности необходимо выбирать соответствующий материал для изготовления червяков и червячных колес, использовать определенный смазочный материал поверх-  [c.369]

Низкий термодинамический КПД агрегата обусловлен потерями, возникающими в процессе передачи теплоты от топлива, обладающего химической энергией высокого потенциала, к технологическому продукту и особенно к водяному пару с энергией низкого потенциала. В рассматриваемом случае потери от неравновесного теплообмена составляют 22, а потери от необратимого горения 23,8 %. Вместе с тем потери эксергии с уходящими газами в ЭТА по эксергетическому балансу составляют 1,3 против 7,1 % по тепловому балансу, что объясняется низким температурным потенциалом уходящих газов, а следовательно, и относительно малой их ценностью.  [c.102]

Относительные потери и передачах при работе с полной мощностью (при работе с неполной мощностью относительные потери существенно растут, особенно в передачах с постоянной силой натяжения) В точных хорошо смазываемых передачах потери в зацеплении 0,5—2%. Большие значения — при малых числах зубьев. В случае масляной ванны Еозникают дополнительные потери на перементивание масла порядка 1—3% Потери в однозаходных точных и хорошо смазываемых передачах с колесом из. бронзы при 1 и 10 м/сек соответственно около 50 35 и 15% в многозаход-ных при угле подъёма витков более 30° — соответственно 20 10 и 4 /о Потери при благоприятных условиях 1—3% при малых мощностях и значительных скоростях до ходят до 10% Потери в зоне контакта в сухих передачах, сталь по стали до 1%, сталь по текстолиту до Потери в опорах поеышенные Потери при благоприятных условиях 3—5°/ при малых диаметрах шкивов и больших скоростях доходят до 10-15 , о  [c.617]

Передачи с изменяемым передаточным отношением и неизменяемым коэффици-е г1том трансформации. К этой группе относятся объемные передачи с дроссельным регулированием скорости выходного звена (с параллельным включением дросселя по отношению к гидродвигателю) и гидромуфты (объемные и гидродинамические). Регулирование скорости осуществляется за счет проскальзывания ведомого звена относительно ведущего, поэтому оно происходит с неизбежным уменьшением к. п. д. передачи. Потери энергии в передаче пропорциональны проскальзыванию , а к. п. д. пропорциойально передаточному отношению и имеет максимальное значение при максимальной его величине.  [c.63]


И, наконец, последними критериями оценки фрикционных схем бессту-. пенчатых передач являются относительные потери в контакте и геометрической к. п. д. передачи. Оба последних показателя связаны с двумя первыми.  [c.379]

Так как мощность, расходуемая на трение, пропорциональна относительной скорости движения взаимоогибаемых кривых, то чем больше эта скорость, тем больше потери на трение. Пусть, например, передача движения между звеньями 1 н 2 осуществляется посредством взаимоогибаемых кривых Ki и К2 (рис. 21.6, а), соприкасающихся в точке С (С , С. ). Мощность Р, , расходуемая на трение скольжения этих кривых, равна  [c.421]

Приведенные ниже значения справедливы при работе передачи в зоне расчетной нагрузки. При уменьшении полезной нагрузки к. п. д. снижается и становится равным пулю при холостом ходе. Это связано с возрастанием относительного значения так называемых постоянных потерь, не зависящих от полезной нагрузки. К ним относятся гидравлические потери, потери в уплотнениях подшипниковых узлов и т. п. Работа, потерянная в редукторе, превращается в теплоту, и при неблагоприятных условиях охлаждения и смазки может вызвать перегрев редуктора. Вопросы теплового расчета, охлаждения и смазки являются общими для зубчатых и червячных передач. Поэтому они лзлагаются совместно в 9.9.  [c.139]

Двизкение колеса а можно разложить на два переносное — совместно с води-лом h 11 относительное — относительно водила h. Мощность переносного движения (Ра)л = а"/гЛ/30 передается без потерь (г()э = 0). Мощность относительного движения Pa = T iiii — л/30 передается с потерями на трение > 0. В зависимости от значения и направления Пд и П ,, Рд может быть больше или меньше Яд. Поэтому и потери в планетарной передаче могут быть больше или меньше, чем в простой. В передачах с внешним зацеплением а и g (см. рис. 8.45) и /ft имеют одинаковые знаки (Пд — п/,, < Пд), потери в них меньше, чем в передачах с внутренним зацеплением а и g (см. рис. 8.48, й), у которых п и я/, имеют разные знаки [Пд — (—п/,) > Пд]. Это следует учитывать при выборе схемы передач.  [c.160]

Определение потерь на трение в каналах вращающихся колес по среднему значению относительной скорости и по среднему значению абсолютной скорости в неподвижных каналах можно признать правильным только при определенной неравномерности поля скоростей. Для вращающихся каналов по данным Зелига [861, начиная с 3, резко увеличиваются коэффициенты потерь. Причем для труб большего диаметра они больше, чем для труб малого диаметра. В этом случае сказывается влияние относительного вихря и противотоков. В гидродинамических передачах аналогичное явление характерно для гидромуфт при малых скольжениях, когда расход в проточной части очень мал.  [c.52]

Если уменьшать число лопастей и увеличивать относительный шаг, то уменьшаются потери от трения, но увеличиваются нагрузки на лопасть и, следовательно, увеличиваются потери от сопротивления давления. С увеличением относительного шага возникают местные диф-фузорности , что способствует увеличению потерь. Минимум потерь соответствует какому-то определенному относительному шагу. Величина этого шага зависит, от формы профиля и его расположения. Кроме того, необходимо знать влияние изменения шага на обтекание профилей, так как иногда приходится использовать один и тот, же профиль в нескольких вариациях. В гидродинамических передачах пока этому вопросу уделено мало внимания. В компрессоро-, газо-и паротурбостроении исследования проведены более полно [24, 25,32].  [c.54]

Дисковые потери возникают из-За трения наружной поверхности дисков колес о рабочую жидкость. В результате этого трения механическая энергия частично или полностью превращается в тепло и оказывается по -ерянной. Дисковые потери складываются из потерь трения о жидкость плоских, криволинейных и цилиндрических поверхностей диска. В отличие от насосов, компрессоров и турбин, где один из смежных дисков вращается, а другой неподвижен, в гидродинамических передачах такой случай является частным. В них смежные диски могут иметь различные относительно друг друга скорости сложную форму на отдельных участках одного и того же диска различные условия взаимодействия, с жидкостью и со смежным диском (различную ширину зазоров, скорости смежных дисков и их обработку).  [c.60]

Смазка. Из-за больших скоростей скольжения витков червяка относительно зубьев колеса возникают условия, которые при недостаточной смазке приводят к росту потерь на трение и повреждению рабочих поверхностей зубьев. В связи с этим вопросам смазки червячных передач следует уделять большое внимание. Выбор способа смазки и вязкости масла осуществляется в зависимости от условий рабслы (тяжелые, средние и т. п.) и скорости скольжения. Обычно при тяжелых условиях работы и малых скоростях скольжения (до Ьм1сек) выбираются более вязкие масла и смазка осуществляется окунанием.  [c.312]

Эти узлы монтировались на станине 25. Особенностью этой установки является способ передачи давления на движущиеся испытуемые образцы 9. В этой схеме передаваемое на o6pa3iriji давление остается постоянным. Давление передается на образцы перпендикулярно за счет установки каретки 15 на двух трехшариковых опорах 18. Применение трехшариковой опоры позволяет каретке перемещаться в осевом направлении и самоустанавли ваться относительно поверхности трения образца. Потери на трение в этой опоре малы, это позволяет замерять силы трения с большой точностью.  [c.67]

В таком мире без статического трения ни на один узел нельзя было бы положиться, как бы хорошо и искусно он нп был бы завязан. Ведущие колеса любого локомотива или автомобиля непрерывно буксовали бы, обеспечивая продвижение вперед только за счет силы кинетического трения (трения движения), которая могла бы сопровождать скольжение буксующих колес относительно рельсов или грунта. Это приводило бы к огромному износу и быстрой порче колес, рельсов или покрышек, не говоря о тех потерях энергии и мощности двигателей, которые вызывались бы развитием тепла при трении скольжения и которых нет при трении покоя. По аналогичной причине ременные и фрикгщонные передачи также действовали бы совершенно неудовлетворительно. Самые привычные действия человека в быту или при работе были бы либо крайне затруднены, можно сказать, до неузнаваемости, либо стали бы невозможны всякий цилиндрический стержень выскальзывал бы из рук и пользоваться ручкой или карандашом для письма было бы невозможно.  [c.108]

Точечный контакт зубьев обуславливает меньшую чувствительность передачи к перекосу валов. Поскольку основным видом относительного движения зубьев является их перекатывание по длине, потери на трение в таком зацеплении аначительно меньше, чем в эвольвентном.  [c.513]

К параметрам работоспособности, рассчитываемым по эксплуатационным наблюдениям, ОТНОСЯТ коэффициент Ци,- использования, коэффициент технического использования, собственные внецикловые передачи Вс, потери Горг из-за организационных причин или коэффициент "Лзагр загрузки, потери Гпер вследствие переналадки, цикловую производительность 2ц, фактическую производительность 2 и т. д. Вместо абсолютных значений времени работы и простоев в формулу могут быть подставлены относительные процентные значения из баланса затрат фонда времени.  [c.602]

ПОЛУВОЛНОВОЙ ВИБРАТОР (полуволновой диполь) — простейшая приёмная и передающая антенна, ГЛ. обр. в области коротких волн п ультракоротких волн. Представляет собой проводящий стержень, длина к-рого близка к половине длины волны излучаемых или принимаемых колебаний. Для связи с генератором или приёмником в ср. части стержня делается разрыв, к к-рому подключается фидер. П. в. можно упрощённо рассматривать как четвертьволновый отрезок разомкнутой двухпроводной линии, проводники к-рой разделены на угол 180° (см. Линии передачи). При этом в идеальном П. в. (без потерь) ток распределён по длине по закону /(г) = /дСозлзЛ, где I — длина П. в., а /ц — ток в пучности (в месте подключения питающей линии). Эл.-магн. поле в ближней зоне П. в. распределено так, что преимуществ, излучение или приёл[ имеет место в плоскости ху (перпендикулярной оси П. в. Ог и проходящей через его центр О). Линии злек-трпч. поля располагаются в плоскостях, пересекающихся по оси Ос, а линии магн. поля образуют окружности с центрами на оси Ос, лежащие в перпендикулярных плоскостях. Диаграмма направленности П. в. представляет собой поверхность тела вращения относительно Ос и описывается в любом аксиальном сечении выражением С = соз<р, где ф — угол между плоскостью преимуществ, излучения и лучом из центра П. в. Сопротивление излучения П, в. равно — 73 Ом. Потери, связанные с проводимостью, в П. в. обычно пренебрежимо малы, так что согласованный с фидером П. в. излучает практически всю подводимую энергию.  [c.31]


Нужно считать, что для турбинных решеток величина Кекр (5 8) 10 . С изменением числа оборотов двигателя существенно изменяется относительная величина механических потерь. В больших (по мощности) передачах величина механических потерь сказывается мало, так как Цмех 0,95 (здесь имеются в виду потери, момент которых изменяется с числом оборотов менее существенно, чем по ).  [c.91]

В обоих случаях регулирования выходная мощность меняется так, что становится меньше номинальной. Для сохранения при регулировании экопомичности передачи необходимо, чтобы мощность на валах насоса Л ) и турбины N2 менялась в одинаковое число раз или чтобы относительная величина потерь оставалась неизменной. При этом к. п. д. передачи  [c.106]


Смотреть страницы где упоминается термин Передачи Потери относительные : [c.160]    [c.173]    [c.144]    [c.88]    [c.63]    [c.189]    [c.451]    [c.589]    [c.309]   
Детали машин Том 3 (1969) -- [ c.11 ]



ПОИСК



Передача Потери

Потеря относительная



© 2025 Mash-xxl.info Реклама на сайте