Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Размеров изменение при покрытия

Равновесие между напряжением и прочностью 206 Радиаторы автомобильные 125, 129 Развертывание 262 Размеров изменение при покрытиях 272  [c.432]

Применяются различные способы нанесения на поверхность трубы пористого покрытия. Например, используется термодиффузионный процесс спекания металлического порошка определенной грануляции с основным металлом в водородной среде при повышенных температурах [137]. При газотермическом металлизационном напылении (электродуговом или газопламенном) расплавленный металл в виде частиц различной дисперсности наносят пульверизатором на холодную трубу, в результате чего образуется разветвленная система открытых пор i[62]. Авторы работы [62] исследовали теплоотдачу при кипении фреонов-11 н 12 на поверхности стальных труб с пористым покрытием из меди М-3. Перед нанесением пористого покрытия применялась дробеструйная обработка поверхности трубы металлическим песком с размерами зерен 0,9—1,2 мм. Опыты показали. что покрытие, нанесенное электродуговым способом, оказалось более эффективным по сравнению с газопламенным. Например, при р = 3,63-10 Па при среднем в этих опытах значении = 6000 Вт/м2 и толщине покрытия 0,235 мм а при кипении фреона-12 на пористой поверхности, нанесенной электродуговым способом, оказался в 4,5 раза больше по сравнению с а гладкой трубы. При тех же условиях на поверхности покрытия, нанесенного газопламенным способом, а увеличился по сравнению с а гладкой трубы только в 2 раза. Изменение толщины покрытия (нанесенного электродуговым способом) от бел = 0,075 мм до бел = 0,3 мм привело к увеличению а. При / = 6000 Вт/м и при бел = 0,3 мм отношение а при кипении на трубе с покрытием к а при кипении на гладкой трубе оказалось равным 5. Аналогичные результаты были получены и для фреонов-11 и 22.  [c.220]


Полная или частичная катодная защита (кормы и носа) достигается соответствующим размещением протекторов, так чтобы сохранялось желательное распределение тока на рассматриваемом участке судна. Протекторы отдают в зависимости от их размеров и действующего напряжения некоторый наибольший ток, определяемый главным образом электропроводностью воды. Наибольший ток, рассчитанный по напряжению и сопротивлению растеканию согласно формуле (7.14), на практике снижается вследствие образования защитного слоя и возникновения сопротивлений поляризации на работающих протекторах этот эффект зависит от материала протектора, от среды и от времени или от условий эксплуатации. Поэтому попятно, что указываемые изготовителями наибольшие значения тока для конкретной среды на практике могут подвергнуться изменениям. При проектировании необходимо учитывать, чтобы достигались и общий ток, и требуемая плотность защитного тока или протяженность зоны защиты. В начале эксплуатации покрытия еще имеют высокое электросопротивление и низкую степень поврежденности. В таком случае протяженность зоны защиты [по формуле (2.44)] получается большой, а требуемый защитный ток малым. В ходе эксплуатации электросопротивление покрытия снижается, вследствие чего не только возрастает требуемый защитный ток, но и уменьшается протяженность зоны защиты. Особое внимание нужно обращать и на то, что при уменьшении проводимости воды, например в портах, протяженность зоны защиты [по формуле (2.44)] уменьшается. Если временно защитный потенциал не везде будет достигнут, то большой опасности коррозии все же не возникнет, потому что катодная защита обычно подавляет действие коррозионных элементов, О зависимости скорости коррозии (по съему материала) от потенциала имеются данные на рис, 2,9.  [c.360]

Главной проблемой при применении окисного топлива и вольфрамового эмиттера или молибденового эмиттера с вольфрамовым покрытием является сохранение размеров ЭГК при облучении, так как в процессе длительного облучения потоком свыше 3 102° распад/см при 1900° К наблюдается небольшое распухание стержней твэлов для малых диаметров (1,3—1,6 см). Вольфрамовый эмиттер с двуокисью урана облучали в вакууме при температуре 1900 К в течение 9875 ч до 3-10 распад/см . Максимальное увеличение диаметра эмиттера после облучения было незначительным и достигало на высоте 3/8 от дна всего лишь 0,030 мм по высоте изменение размера не превышало 0,028 мм.  [c.134]

Для сварки электродами с кислым и рутиловым покрытиями характерен мелкокапельный перенос. Размер капель при этом существенно зависит от силы тока. При низкой плотности тока металл переносится более крупными каплями. С ее повышением масса переносимых капель резко уменьшается, и при высокой плотности тока наблюдается чрезвычайно мелкокапельный (так называемый туманообразный) перенос металла. Изменение напряжения дуги в практически значимых пределах не отражается на переносе  [c.19]


Для борьбы с налипанием предложены различные способы применение игл цилиндрической формы вместо конической, вращающихся игл, безыгольные пульверизаторы, распылители с двумя соплами и др. В некоторых случаях эти меры снижают налипание или облегчают очистку сопла, но не устраняют полностью отрицательных последствий изменения размеров соила при нанесении покрытий.  [c.127]

Анализ изменения сцепления покрытий в зависимости от относительного изменения размеров покрытия и подложки для образцов, нагретых чуть ниже температуры начала спекания окисных слоев, показывает, что прочность сцепления остается высокой фактически при любой разнице размеров покрытия и подложки, выраженной в процентах (А). Это указывает на то, что разрушение и отслоение покрытий не вызывается напряжениями сжатия, которые возникают во время нагревания образцов. На рис. 6 показано изменение прочности сцепления покрытий во время спекания в зависимости от изменения величины А, измеренной после всего тер-  [c.215]

Рост оксидной пленки происходит не на внешней стороне металла, как это бывает, например, при нанесении гальванических покрытий, но в очень тонком поверхностном слое металла. Поскольку образование оксидного слоя идет в глубину — изменение размеров изделий при оксидировании весьма незначительно и происходит главным образом за счет несколько большего объема образовавшихся окислов.  [c.70]

Когда угол наклона достигнет примерно 45° от вертикали, станет заметно, что детали собрались в плотную шарообразную кучу, которая хотя и очень интенсивно перемешивается, но ее активная поверхность верхнего слоя, на котором при покрытии -осаждается металл, очень мала. Наиболее выгоден такой угол наклона, при котором детали при нормальной для данного размера колокола загрузке занимают от половины до одной трети площади дна. При этом они хорошо перемешиваются, а активная поверхность кучки достаточно велика. Заметить такое положение колокола очень легко, потому что при изменении угла наклона максимум на 10° распределение деталей по дну резко меняется в сторону той или другой крайности.  [c.57]

Так как Х и х с изменением толщины покрытия 1 не меняются (рис. 4.15), а а, Ь, с и d — постоянные числа, то выражение в квадратных скобках уравнения (4.22) для призмы с постоянными геометрическими размерами и при неизменной температуре будет величиной постоянной. Назовем ее постоянной призмы И обозначим через К. Тогда уравнение (4.22) примет вид  [c.156]

Трудно дать количественную оценку распределений напряжений, изображенных на рис. 1а — 1д. Это связано с тем, что модели, принятые в качестве основы для расчетов, не очень точно соответствуют реальным композитам, в которых локальное расстояние между волокнами оказывается случайным, меняющимся от нуля (случай контактирующих волокон) до нескольких диаметров волокон. Во многих случаях размеры отдельных волокон также меняются. Свойства матрицы могут быть локально изменены вследствие абсорбции покрытия волокон. На поверхности волокон часто появляются поры. Действительные величины усадочных напряжений, возникающих при конкретном процессе производства, фактически оказываются неизвестными из-за, вероятно, существующих релаксации и изменения упругих свойств компонентов при повышенной температуре. В силу этих причин предсказания прочности становятся ненадежными.  [c.339]

Экономичность катодной внутренней защиты, естественно, наиболее велика там, где имеется опасность сквозной и язвенной коррозии. Внутри небольших резервуаров защитные потенциалы не измеряют, но принимают защитный ток по опытным данным. Для защиты 1 м поверхности без покрытия в среднем принимают (см. раздел 21.4) 1,5 кг магния яри сроке службы в 4—5 лет [15]. Затраты на крепление и монтаж могут быть такого же порядка, как и стоимость самих протекторов. Хотя при протекторной защите резервуаров затрат на электроэнергию не требуется и система работает практически без обслуживания, для более крупных катодно защищаемых резервуаров все чаще применяют системы с наложением тока от постороннего источника, причем затраты на такую систему обычно превышают 20 марок на 1 м и зависят от размеров резервуара [16]. Сопоставление затрат на катодную внутреннюю защиту в табл. 22.3 с затратами на наружную защиту показывает, что в соответствии с ожиданиями катодная защита более экономична для сооружений, имеющих покрытия. Характерна высокая экономичность катодной защиты обсадных колонн и трубопроводов на нефтяном месторождении по комбинированной схеме [17]. Затраты на сооружение систем катодной защиты, отнесенные ко всей величине капиталовложений (см. табл. 22.3) в основном не зависят от изменений цен, связанных с инфляцией.  [c.422]


При нагревании подавляющее большинство твердых тел испытывает расширение, приводящее к изменению их размеров. Различие коэффициентов теплового расширения (КТР) вызывает появление внутренних напряжений в пленках, покрытиях, адгезионных соединениях, сварных швах и т. д., что не всегда желательно и допустимо. Поэтому практически важным является согласование КТР материалов, идущих на изготовление РЭА. Для подбора этих материалов и направленного изменения их КТР требуется знание физической природы самого явления теплового расширения тел Рассмотрим кратко ее суть.  [c.135]

Преимуществами процесса с применением проволоки являются непрерывность работы, ограниченная только длиной катушки проволоки, отсутствие опасности загрязнения покрывающего металла, большая компактность металлизатора, удобство и быстрота изменения покрытия. При порошкообразном напылении можно использовать любой металл, который может быть получен в виде мелкого порошка. Следовательно, простым смешением порошков в желаемой пропорции в одном бачке либо при использовании двух отдельных бачков и потоков газа можно получить покрытия, состоящие из двух или более металлов (независимо от их способности образовывать сплав друг с другом). Непрерывность напыления, ограниченная размером питающего бачка с порошком, практически меньше, чем в процессе с использованием проволоки. Металлический порошок может быть загрязнен в случае несоблюдения мер предосторожности. При замене одного металлического покрытия на другое бачок и каналы, по которым порошок подается в сопло, следует тщательно очистить. Размеры частиц порошка требуется строго контролировать просеиванием (обычно выбирают сита с номерами 100—300 меш). Необходимо избегать попадания влаги, чтобы предотвратить закупорку.  [c.79]

Максимальные размеры ванны с электролитом и мощность грузоподъемного оборудования являются ограничительными факторами при обработке крупногабаритных изделий. При нанесении покрытия на лист или ленту электроосаждение может осуществляться непрерывно. Изделие поступает и выводится из обрабатываемого раствора в ванне через контактные ролики. На мелкие изделия (клеммы, вспомогательные детали), которые невозможно или нецелесообразно навешивать на подвески, можно нанести покрытие в перфорированном барабане, погруженном в электролит. Катодная поляризация осуществляется от общего контакта через детали, загруженные в барабан. Так, как барабан непрерывно вращается, покрытие наносится равномерно на все детали за счет непрерывного изменения их положения. Процесс протекает медленнее при получении покрытия заданной толщины, чем в случае нанесения покрытия при постоянном контакте, так как осаждение на какой-либо индивидуальной детали происходит только при соприкосновении ее е ловерхностью шины, проходящей по окружности барабана. Некоторая потеря покрытия может происходить из-за биполярного эффекта в массе шины и, вероятно, вследствие механического истирания или химического растворения осадка.  [c.90]

При других методах измерения эти ошибки могут быть значительными. Так, при прямом бесконтактном методе фактический размер детали часто определяется путем измерения величины зазора (например, с помощью фотоэлемента) между поверхностью детали и измерительной базой контрольного устройства. Фиксированная величина этого зазора будет определяться при этом не только положением поверхности детали по отношению к измерительной базе, но и другими, случайно появляющимися факторами. Фиксированная величина зазора может уменьшаться, если поверхность детали покрыта пленкой смазывающе-охлаждающей жидкости или если в зазор попадают абразивная пыль, мелкая стружка, что весьма характерно для шлифовальных операций. При косвенных методах измерения, когда об изменении размера детали судят по перемещению частей станка или режущего инструмента, на точность контроля оказывают влияние такие факторы, как жесткость элементов, технологической системы, точность станка и износ режущего инструмента.  [c.94]

Особенностью армированных (или в общем случае композиционных) теплозащитных материалов является наличие по крайней мере двух фронтов уноса массы поверхностного, задающего линейный размер (толщину) теплозащитного покрытия, и внутреннего, определяющего глубину слоя с измененной структурой. При заданных внешних условиях нагрева при определении работоспособности теплозащитного покрытия в целом на первый план выходят либо требования к точности определения характеристик поверхностного разрушения, либо необходимость точного расчета глубины прогрева. Для определения глубины прогрева, помимо теплофизических свойств, важно знать величину скорости перемещения внешней поверхности и ее температуру Т - Напротив, при ква-зистационарном разрушении нет необходимости детально исследовать внутренние процессы достаточно знать суммарное количество тепла, поглощенное материалом, прежде чем он нагреется до температуры разрушения. Однако время установления квазистационарного разрушения Тщ и, следовательно, общая толщина унесенного слоя материала существенно зависят от его теплофизических свойств, в частности коэффициента теплопроводности.  [c.88]

ФОТОРЕЗИСТЫ — материалы органич. и неорганич. происхождения, чувствительные к оптич, излучению видимого или УФ-диапазона применяются в фотолитографии для получения рельефного покрытия заданной топологии. Формирование в слое Ф., нанесённого на к.-л. подложку, рельефных областей заданной конфигурации происходит в результате его локального экспонирования и последующего проявления. При локальном экспонировании в Ф. идут физ.-хим. превращения с изменением размера, структуры или полярности молекул, ведущие к изменению свойств покрытий и возможности удаления при проявлении облучённых или необлучённых участков. Е сли в результате экспонирования хорошо растворимыми становятся облучённые участки и они удаляются в процессе проявления, то Ф. наз. позитивным если в процессе проявления удаляются необлучённые участки, Ф. наз. негативным. Полученное таким способом рельефное покрытие служит защитой нижележащего рабочего слоя от воздействия травлений.  [c.358]


Для оксида циркония переход в нанокристаллическое состояние также сопровождается значительным снижением теплопроводности, что связывается с увеличивающимся рассеянием фононов на поверхностях раздела [51]. Длина свободного пробега фононов в данном случае меньше таковой для монокристалла. Аналогичная ситуация имеет меето и для тонких алмазных пленок и фуллеритов (конеолидированных фуллеренов), теплопроводность которых значительно ниже теплопроводности алмазных монокристаллов [36]. На рис. 3.18 показано изменение теплопроводности нанокристаллических покрытий толщиной 0,5 —1,2 мкм из иттрийстабилизированного (8—15% УгОз) диоксида циркония в зависимости от размера кристаллитов при Т =25, 480 К. Точки — это опытные данные линии — результаты расчета по соотношению  [c.70]

В ряде работ неоднократно отмечался эффект увеличения пластичносги и изменения твердости покрытия [19, 211, 213]. Возрастание пластичности связано с уменьшением концентрации примесных атомов, увеличением размера зерна, изменением уровня остаточных напряжений, подавлением столбчатой структуры. Однако должного понимания на сегодняшний день вопрос не нашел. Отмеченная выше возможность развития текстуры также может рассматриваться как механизм снижения твердости и роста пластичности покрытий. Действительно, поскольку плоскости плотнейшей упаковки располагаются преимущественно перпендикулярно поверхности, следует ожидать снижения сопротивления и хрупкости материала при вдавливании.  [c.150]

Поскольку монография посвящена новым износостойким антифрикционным покрытиям, рассмотрим кратко некоторые вопросы, касающиеся износа материалов. В соответствии со стандартом (ГОСТ 16429—70) износом называется процесс постепенного изменения размеров тела при трении, проявляющийся в отделении с поверхности трения материала и (или) его остаточной деформации. Таким образом, процесс внешнего трения всегда сопровождается износом. Многочисленные исследования показывают, что прямой зависимости между трением и износом не существует, т. е. большая сила трения далеко не всегда сопровождается большим износом. Вместе с тем, если внешнее трение предопределяет механические потери энергии, т. е. коэффициент полезного действия машины или механизма, то сопутствующий ему износ является основным фактором, определяющим долговечность машины. Статистика показывает, что более 80% деталей машин выходит из строя в результате износа. Следовательно, изучение этого вида деформации, позна-  [c.11]

Мостовое замощение предохраняет основание В. с. трамвая от попадания в него поверхностной воды и удерживает рельсы в надлежащем положении, препятствуя боковым перемещениям их, защищая рельсы от темп-рных влияний и уменьшая размеры изменений длины рельсов от действия темп-ры. Замощение путей обыкновенно устраивается такое же, как и прочей проезжей части улицы, но с укладкой вдоль рельсов специальных бордюрных камней, а иногда упругих прокладок для уменьшения взаимодействия между рельсами и мостовой. При укладке рельсов типа Виньоль при каменных мостовых вдоль рабочего канта рельсов укладывают иногда специальный бордюрный камень, дающий возможность свободного качания ребордам колес. Асфальтовые и торцовые мостовые устраивают на слое бетона, гранитные — на бетоне или гравии, булыжные — на песке. По мнению англ. авторитетов наилучшие результаты дают мостовые иа прямоугольных гранитных брусков 150 — 225 X 100 мм и высотой 125 мм на бетонном основании, толщиной 125 мм с подливкой из цементного раствора состава 1 4 и толщиной в 13 мм. Важным условием хорошей работы мостовой является тщательный подбор и посадка камней и надлежащее трамбование. В Америке замощение гранитными брусками ведется на слое гравия с устройством в нек-рых случаях упругих прослоек между рельсом и мостовой, а также заполнением пространства между шпалами слоем бетона (шпальные ящики). Швы мостовой заливают на половину высоты гудроном и сверху цементом. Устройство брусчатых и булыжных мостовых на слое песка без заливки швов непрочно, в особенности при отсутствии дренажа. Чтобы избежать просадки прилегающих к ррльса.м камней, боковые пазухи рельса закладывают деревянными, бетонными, асфальтовыми или гончарными заклад1сами, а иногда замазывают цементным раствором. Для разрешения вопроса о наилучшем соединении В, с. с покрытием уличных проездов применяются очень разнообразные и иногда весьма  [c.323]

Процесс получения микротопливной частицы с многослойным покрытием происходит в одной и той же реакционной камере во взвешенном слое за счет изменения параметров процесса и состава газа. При нормальном давлении несущего транспортного газа возможно получение микротвэла размером до-1000 мкм, при более высоком давлении аргона и, следовательно, большей взвешивающей способности возможно получение и больших размеров микротвэлов.  [c.15]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Контроль соблюдения размеров. Контроль раз.ме-ров нанесенных г окрытий на тела простой конфигурации не вызывает трудностей Его осуществляют обычны измерительным инструментом штангенциркуле. ,. микрометро и и т. п. Контроль толщины покрытий, нанесенных на изделие сложной конфигурации, выполняетсг с помощью специальных толщиномеров, принцип действия которых основан на изменении силы тока или какого-либо другого электрического параметра при составлении единой электрической цепи, в которую входят покрытие, измерительный датчик и преобразователь электросигналов.  [c.185]

Исследования по изучению изменения размеров образцов из стали марок Ст.45 и 36Г2С после термохромирования показали, что при толщине хромового покрытия 0.06—0.08 мм на об-  [c.184]

Когда изнашивание приводит к большим изменениям размеров деталей, о величине линейного износа судят по разности размеров до и после испытаний. В качестве мерительного инструл1ента могут применяться концевые меры длины, оптические инструментальные микроскопы, микрометры и т. д. Приборы, позволяющие определять размеры с точностью до 1 мкм, дают возможность оценить. линейный износ с точностью не менее 5 мкм. Увеличение погрешности связано с наличием деформации, неточностью установки инструмента, непостоянством температуры измерений.- С помощью микрометрирования можно найти лишь конечную величину износа без оценки его динамики. Увеличение количества замеров связано с еще большими погрешностями из-за необходимости дополнительных разборок-сборок. Износ покрытий при изнашивании о закрепленные абразивные частицы рекомендуется [159] оценивать методом микрометрирования, измеряя длину пальчиковых образцов с точностью не менее 0,01 мм.  [c.95]


Приготовление образцов с покрытиями для просмотра в растровом микроскопе обычно не вызывает затруднений и может проводиться в соответствии с рекомендациями по подготовке металлических образцов [256]. Особое внимание следует обратить на предотвращение изменений рельефа (отслоение и выкрашивание покрытий) при механической подготовке объектов исследования. При изучении неэлектропроводных покрытий для отекания заряда, возникшего на поверхности при сканировании электронного пучка, на образец наносится проводящая пленка углерода или металла. В качестве объекта изучения могут применяться сравнительно крупные образцы —. до 70X20 мм в сечении (размеры должны соответствовать объекто-держателю).  [c.180]

Язвенная коррозия более опасна, чем равномерная, так как ее очень трудно обнаружить из-за небольших размеров язв и их заполнения коррозионными продуктами. В результате язвенной коррозии наблюдаются сквозные проржавления стенок трубопроводов, резервуаров и емкостей уже на третьем году их эксплуатации, и практически все это обнаруживается в момент аварии. Скорость таких разрушений, как показывает практика, в основном зависит от среды, в которой эксплуатируется сооружение, качества изоляционного покрытия и вида транспортируемого продукта. Поэтому при выборе трассы трубопроводов и места под строительство нефтебазы или компрессорной станции проводят комплекс геологогеофизических изысканий с целью удаления от коррозионно-опасных зон и источников блуждающих токов. Температура грунта также способствует изменению скорости коррозии, которая увеличивается при повышении температуры и уменьшается при понижении. При прокладке трубопроводов в мерзлых грунтах этот фактор приобретает большое значение, так как скорость коррозии сильно увеличивается при оттаивании грунта.  [c.6]

Независимое изменение размеров зерна и образца в работе [172] позволило строго исследовать влияние на ползучесть такого параметра, как число зерен в поперечном сечении образца. Какой-либо четкой корреляции между этим параметром и скоростью ползучести ни на воздухе, ни в вакууме не наблюдалось. Однако в обеих средах почти при всех размерах зерна толстые образцы были более стойкими к ползучести, чем тонкие. При испытаниях на воздухе это явление можно объяснить возрастанием в случае тонких образцов относительного числа зерен на поверхности и, следовательно, вклада зернограничиых каналов для проникновения воздуха в материал. Этот эффект прямо конкурирует с упрочняющим влиянием окалины, которая способствует повышению сопротивления ползучести тонких образцов [115]. В то же время в случае вакуума более высокая стойкость толстых образцов к ползучести согласуется с представлением о наличии принципиально непрочного поверхностного слоя. В вакууме (10 торр) внешняя поверхность образца или детали ко] струкции покрыта адсорбированными газами, но не имеет окалины, поэтому может быть по природе менее стойкой, чем материал объема, например просто из-за отсутствия геометрических препятствий ползучести.  [c.40]

В случае, если порошкообразные частицы схватываются с твердой поверхностью, естественно предположить, что в процессе нанесения покрытия должно происходить также сцепление частиц друг с другом, сопровождающееся их укрупнением. Седимента-ционный анализ показывает, что при растирании на стекле смесей серебряного порошка и хлористого натрия частицы в результате агрегатирования значительно укрупняются. Состав смеси оказывает влияние на изменение размера частиц d при использовании смеси с большим содержанием порошка серебра увеличение размера частиц происходит интенсивнее (табл. 5).  [c.64]

По наружному диаметру болта и внутреннему диаметру гайки допуски значительно больше, чем по среднему диаметру. Толщина слоя покрытия сказывается на изменении размеров этих диаметров в значительно меньшей степени (Д =2Д вместо Д =4Д). При выполнении заготовок под резьбы оставляется сравнительно большой запас на подъём виткл. Этот запас частично может быть  [c.58]


Смотреть страницы где упоминается термин Размеров изменение при покрытия : [c.69]    [c.136]    [c.47]    [c.482]    [c.143]    [c.15]    [c.127]    [c.128]    [c.13]    [c.199]    [c.28]    [c.50]    [c.60]    [c.99]    [c.118]    [c.159]    [c.160]    [c.246]   
Защита от коррозии на стадии проектирования (1980) -- [ c.272 ]



ПОИСК



Размеры изменение



© 2025 Mash-xxl.info Реклама на сайте